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Abstract

Mobile robots in general and service systems in particular are often required to operate in the same
environment as humans, sometimes even along with humans. Such systems have to be able to perceive
their environment and to react to perceived changes appropriately. The goal often is not anymore
maximum efficiency but reliable and flexible execution of various tasks even when the environment is
dynamic.

As an increasing number of components is needed to perform different tasks and to cope with a
set of situations, two issues are raised immediately.

The first issue is related to restricted resources on board a mobile platform. Thus, one needs
approaches that are balanced in terms of resource consumption, reactivity and achieved results.

The second issue is related to managing the overall complexity. The capacity to perform various
tasks depends on the integration of a substantial amount of skills. Although three-layer architectures
evolved as standard for taskable robotic systems, the lack of standards for components and for the
communication between components makes it hard to implement a complex robotic architecture.

Thus, the goal of this thesis is twofold. The first goal is to make the development of taskable
robots more efficient, and the second goal is to increase their capabilities by providing balanced skills
that exploit the advantages of loosely coupled components.

The first goal is met by a software concept tailored to the needs of taskable robots. The complexity
issue is tackled by means of communication patterns that provide a fixed semantics for component
interactions. The dynamic wiring pattern is the basis for making the control flow and the data flow
configurable at runtime from outside a component as needed to fully exploit the power of three-layer
architectures.

The second goal is deepened with respect to navigation with a focus on mobility since mobility is
a fundamental and pivotal capability for many service robotic applications.

The verification of the approach is achieved by an implementation of a full-fledged system that is
able to perform various complex fetch and carry tasks as well as recognition tasks in a dynamic test
environment.
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Chapter 1

Introduction

The field of robotics has gained more and more attention over the last years. In particular, the develop-
ment of service robotics is identified as a tremendous challenge. Many potential applications require
a robot to operate in the same environment as humans, sometimes even along with humans. Such
systems have to be able to perceive their environment and to react to perceived changes appropriately.
The goal often is not anymore maximum efficiency but reliable and flexible execution of various tasks
even in a dynamic environment.

In reference to the best available knowledge that requires the integrated use of symbolic and sub-
symbolic mechanisms of information processing with both forms of information processing interact-
ing tightly. Subsymbolic mechanisms ensure flexibility and reactivity even in dynamic environments
since they typically allow for short cycle times. Symbolic approaches afford goal-oriented activities
but typically require time-consuming calculations.

The state-of-the-art architecture for such systems is a three-layer architecture. In this work, the
lowest so-called skill layer consists of components that operate on the level of sensors and actors.
These mainly form control loops and, for example, build a map of the environment or ensure colli-
sion free motion. The medium so-called sequencing layer is responsible for the situation dependent
selection and configuration of components and also coordinates the task execution by synchronizing
the execution progress with a discrete description of desired plots. Finally, the uppermost deliberation
layer comprises time-consuming algorithms like the symbolic task planning.

The organizational strength of a three-layer architecture is founded in its fundamental support of
a situation dependent deployment of the robot’s capabilities. That is of particular importance since
service robotic applications have to cope with many different challenges while executing a task. These
are typically such that, for example, a single instance of a motion control algorithm is not able to
handle all kinds of motion control tasks efficiently. A three-layer architecture develops its full power
only in case it has a substantial set of skills at its disposal. Furthermore, these skills have to be prepared
to get recombined to form different behaviors. Without being able to configure and recombine the
skills such that they are adapted to the encountered situation or task at issue, one is typically not able
to perform even a standard fetch and carry task.

As an increasing number of components is needed to perform different tasks and to cope with a
set of situations, specific demands on the various components of such systems are imposed and two
issues are raised immediately. The first issue concerns restricted resources on board the robot. Thus, it
is not possible to consider each component in isolation. In most cases, simply combining approaches,
that are already available for subtasks, results in far too resource intense solutions. In fact, one has to
devise new methods for subtasks such that their interplay results in an overall solution that is balanced

1



2 CHAPTER 1. INTRODUCTION

in terms of resource consumption, reactivity and achieved results, for example.
The second issue is related to managing the complexity of service robot systems. Successfully

implementing a three-layer architecture is tightly related to a software architecture. Without a software
concept, one hardly achieves an interface semantics that ensures the level of decoupling that is required
for recombining skills to different behaviors. Task execution in a three-layer architecture severely
depends on the configurability of numerous interdependencies between distributed and concurrent
activities. The decoupling concept of the software architecture is the crucial factor towards achieving
the necessary modularity and flexibility of the implementation. Without adhering to the decoupling
concept of the software architecture, the overall complexity of the system is hardly controllable and
often even restricts the applicability of skills.

1.1 Thesis Outline and Contributions

This thesis is concerned with aspects of building taskable mobile robots. A taskable robot is not
tailored to a specific purpose but is able to perform different tasks without requiring to rework the
control system of the robot.

Chapter 2 gives a brief overview on the history of robot architectures and introduces the three-layer
architecture as state-of-the-art architecture for taskable robots. A specific instantiation of a
three-layer architecture is described that has been implemented on a mobile platform based on
the contributions of this thesis.

Chapter 3 addresses mobility for robots in dynamic environments. The contribution is a balanced
approach in terms of necessary computing power, achieved reactivity and deviation from opti-
mality and completeness. It provides basic mobility in dynamic environments.

Chapter 4 provides an outline of a computation scheme for simultaneous localization and mapping.
The computation scheme allows to acquire a preliminary map of an environment that can simul-
taneously already be used for localization and for navigation purposes. The type of acquired
map allows to postpone time-consuming global map optimizations without loss of information.

Chapter 5 which is pivotal to this work, presents a software architecture that supports the develop-
ment and implementation of taskable robots. It addresses the complexity issue by means of
communication patterns that provide a fixed semantics for component interactions. The dy-
namic wiring pattern is the basis for making the control flow and the data flow configurable at
runtime from outside a component as is needed with nearly any robotic architecture.

Chapter 6 shows the coaction of all contributions of this thesis. The workability of the approaches
is illustrated by means of two demanding tasks, a pattern building task and a mail distribution
task. Both tasks require a fully integrated system with balanced skills and can be executed only
by tight interactions of all components.

Chapter 7 concludes with a brief summary and an outlook.



Chapter 2

The Architecture

2.1 Introduction

In general, an architecture is a description of how a system is constructed from basic components. An
architecture also describes how components fit together to form the whole and it imposes constraints
on how a robot system is to be structured. In the context of this chapter, the term architecture refers
to the arrangement of the control mechanisms of a robot.

Of course, a great impact on the architecture of a robot stems from the purpose it is designed for.
For example, wandering around without having to remember any external states results in an obvious
control architecture. Thus, it is often assumed that the architecture is an immediate result that needs
no further consideration. That view is fleshed out by the fact that any system can be described by
some kind of architecture.

For a long time, it was assumed that there are no general principles that are worth to be abstracted
from implemented systems. Nevertheless, it turned out, that implementations of robotic systems not
only follow certain rules but that encountered limitations often are correlated to a certain type of ar-
chitecture. Foremost, it has been recognized that there is a fundamental difficulty in bridging the gap
between numerical sensor values and symbolic descriptions and between symbolic task specifications
and their execution in real world. However, as soon as one wants a robot to execute various tasks in a
changing environment, there is no obvious way to do without compact and abstract symbolic descrip-
tions or to do without sensor based feedback. Although an architecture cannot close the fundamental
gap between symbolic and subsymbolic mechanisms, it can arrange the interaction such that one can
still take advantage from both worlds at least in certain settings.

2.2 A Brief History of Robot Architectures

A very well overview on the development of robot architectures is given in [98] which forms the
basis for this survey. In earlier times, the sense-plan-act approach [116] was the dominant view. This
classical approach comprises a vertical division of the control problem into several functional units
as shown in figure 2.1. Each functional unit is responsible for a specific task. Information flows
from sensors through all functional units to actuators and never in the reverse direction. The job
of the perception system is to translate sensor data into a world model which is then used by the
planning system. Executing a plan was considered simple compared to generating a plan. However, it
turned out very soon that planning and world modeling is even harder than already assumed and that
executing a plan without taking into account changes in the environment is an inadequate approach.

3
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The subsumption architecture [16] was a clear break with the sense-plan-act approach. As shown
in figure 2.2, the control problem is tackled by a horizontal decomposition. Each layer implements
one behavior. A behavior gets sensor input and produces actuator settings and is able to control the
robot independently of the other layers. The advantage is that there is neither a centralized perception
component that has to perceive everything nor is there a centralized planning that has to plan for
every single step and contingency. In contrast, each behavior performs solely that kind of sensor
processing and action generation that is needed with the behavior. Different behaviors are coordinated
via suppression or inhibition that is one behavior can overwrite either the input or the output of another
behavior. The design methodology is to stack behaviors of increasing complexity such that the output
of a complex behavior gets overwritten as soon as a lower level behavior like obstacle avoidance gets
active. The most prominent example of the subsumption architecture is the robot Herbert [24] that
was programmed to find soda cans in an office environment.

However, there is an important issue with respect to complexity management which is not ad-
dressed at all by the subsumption architecture making it unsuitable as engineering methodology [67].
Behaviors cannot be designed independently since upper layers interfere with the lower layer behav-
iors. Even small changes to a behavior often require the redesign of the overall controller. The problem
is further tightened by the fact that behaviors often cannot naturally be arranged in a hierarchy to apply
the mechanism of suppression and inhibition. Decoupling behaviors by not maintaining shared states
and using the world as its best model [18] causes severe limitations since similar states of the world
can mean completely different things depending on the context in which they are encountered.

Consequently, new kinds of architectures have been proposed that address the problem of imple-
menting goal directed behaviors by means of robust and reactive components. One class of approaches
specifies both the goals and the methods required for their achievement by means of a specialized lan-
guage that allows for more complex arbitration schemes. The specification is compiled into a decision
network [85]. At execution time, the decision network maps sensor input to actions. Even though a
decision network can represent conditional plans to handle contingencies, that results in a combina-
toric explosion in the number of states. Furthermore, most of these systems have no notion of sensing
goals and assume that all relevant states are perceived on the fly. Related work all addressing short-
comings of the purely reactive approach or its simplified arbitration scheme can be found in [125], [3]
and [107].

A general drawback of these systems is that they are not taskable that is they are designed for
a single task only and performing another task requires to rework the control system. At least three
different groups came up with similar solutions of combining deliberation and reactivity [25] [53]
[8]. All three approaches share the idea of using three main components: a reactive feedback control
mechanism working with a short cycle time, a deliberative planning capability and a sequencing ca-
pability that connects the first two components. The importance of the sequencing capability was first
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Figure 2.3: The three-layer architecture [41]

pinpointed in [41]. The three-layer architecture as presented in [41] is shown in figure 2.3. A good
characterization on three-layer architectures can be found in [10].

The success of three-layer architectures results from its compliance with the empirical observation
that control mechanisms for mobile robots can be divided into three distinct categories. The first
category are reactive control algorithms called skills. These form the interface to the real world and
ensure reactivity and responsiveness. However, these need to be configured depending on the task and
the overall context and are composed to different more complex behaviors. Most important, they have
to fail cognizantly [117]. Instead of being designed to never fail, they only have to be designed such
that they can report each failure. This is a much more realistic assumption for algorithms operating a
robot in real world and it forms the basis to take advantage from corrective actions of the other layers.

The second category are mechanisms for activating and deactivating skills, setting their parameters
and composing them to behaviors. A sequencing component conditionally responds to the outcome
of the executed behaviors. It expands the general plot of a task at execution time taking into account
the encountered situation. This circumvents the combinatoric explosion that comes along with plots
that try to consider any possible contingency in advance. In contrast to plans, conditional sequencing
provides much richer control constructs to express procedural knowledge on how to execute a specific
task. For example, conditional sequencing allows for repair procedures and can handle concurrent
and interacting tasks. The sequencing component takes into account past and current states but no
future states. For example, it does not check the effect of selecting a particular expansion by means
of temporal projection.

The third category are mechanisms that reason in depth about future states and that generate plans,
for instance. In principle, there are three different ways of interacting with the deliberative layer. The
first option is to invoke the planner from the sequencing layer and to consider the planner as expert
for specific tasks. The second option is to consider the planner as the only instance that provides to
be executed tasks to the sequencing component. The third option is to have a two-way interaction
between the sequencing layer and the deliberative layer.

The distinguishing feature of a three-layer architecture is that one can control real robots per-
forming complex tasks even with a trivial deliberative layer and even with skills that cannot handle
all situations. The sequencing component provides the necessary glue logic and is the place to store
procedural knowledge that neither fits at the deliberative layer nor at the skill layer.
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2.3 Instantiations of Three-Layer Architectures

In principle, there exist many different instantiations of this architecture. As soon as a mobile robot
reaches a certain level of flexibility with respect to the tasks it can perform, one can find a structure
according to a three-layer architecture, most often implicit and rarely explicit.

The sequencing layer of SSS [25] is based on subsumption. Atlantis [53] used the RAP system
[41] before ESL [54] has been developed. The sequencing layer controls the task planner and it is
tailored to programming convenience rather than to interacting with a symbolic planner. 3T [9] first
used the REX/GAPPS system [84] and switched to the RAP system. The RAP system was extended to
handle continuous processes rather than atomic operators. The sequencing layer is controlled by the
task planner.

Specialized languages [52] [17] to implement the skill layer did not show additional value com-
pared to all-purpose programming languages. In contrast thereto, due to the needed control constructs,
conditional sequencing is done much more efficiently with a specialized language. In principle, one
can either extend a standard language or one can define a language in its own. The first approach
is taken by TCA [139], TDL [141] and ESL [54], for example. Typically, the task refinement is pro-
grammed rather than described and the task refinement is just done as programmed without looking
up behaviors matching a task specification. Thus, newly added alternatives are only considered when
added to the respective control programs. The integration of a classical AI planner with a real robot
based on TCA is described in [63].

The second approach is taken by the RAP system [41], PRS [56] and RPL [109], for example.
The procedural reasoning system (PRS) is a general framework and it is argued in [73] that it can
be adapted to robot control. RPL is tailored to handle execution flaws by means of plan repair rules.
Thus, RPL provides means to support introspection to the structure of a controller as it is exploited
by the structured reactive controllers [6]. The RAP system provides both, a declarative description of
the preconditions and effects of a task and a procedural expansion of it in form of a task net. Such a
unit is called a reactive action package (RAP). A library holds RAPs and task net steps are matched
against it at execution time. A newly added RAP is immediately available to all task nets. The RAP
system has been used to successfully implement several robots [37] [55] [44] and has been extended
several times [43]. A comparison of some robot programming languages can be found in [121]. An
evaluation of architectures can be found in [118].

COLBERT is also called a language for conditional sequencing by its developers [94]. It is tightly
integrated into the Saphira control architecture [96] and is based on finite state automatons with a
fixed cycle time. However, these do not scale to more complex sequencing tasks. At the other end are
GOLOG and its extensions [102] [57]. GOLOG is based on the situation calculus and provides very
compact specifications of complex controllers. However, executing the output of a GOLOG program
requires substantial glue logic [62]. For example, Minerva used a GOLOG component on top of the
structured reactive controllers [147].

2.4 Design Decisions Made with Implementing a Three-Layer Archi-
tecture

The architecture of the system that is based on the contributions of this thesis is shown in figure 2.4.
The major component with respect to control is the agenda and interpreter component. Many tasks
are easily specified at an abstract level but their execution ultimately requires a complex interaction
and sequencing of skills. It is based on a reimplementation of the xRAP system that is not publicly
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available [42]. The major difference to the RAP system are the enhanced control constructs as de-
scribed in [42]. Furthermore, the restriction that only primitive actions can interact with skills is
omitted. Thus, complex state transitions needed without deactivating skills can be shifted from the
skill layer to the sequencing layer where powerful representations are available.
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Figure 2.4: The three-layer system architecture.

All activities are represented on the agenda and new tasks have to be placed on the agenda for
execution. Expansions of task nets can contain nodes whose execution results in invoking an expert.
For example, a task planner at the deliberative layer is invoked in this way. A task planner is invoked
for such tasks for which the task net formulation is not feasible due to the combinatoric explosion of
states. For example, creating a certain pattern of colored discs on a table is done by moving to the
table, invoking a sensing operation and then requesting the subsequent task net from the task planner.

In principle, the task planner is neither responsible for all activities nor has it to be able to handle
any situation. Furthermore, plans are no rigid control regimes. Since we know for what kind of tasks
the symbolic planner is invoked, we also know which contents of the knowledge base are relevant for
the planning task. Only these are extracted and converted into a representation processable by the task
planner. The result of the task planner is transformed into a task net. Task planners used comprise the
IPP [93], the FF planner [70] and the SHOP family [114].

The task planner does not plan for any contingencies even though the representational power of
the operators is severely improved compared to the first task planners [48]. Rather, execution flaws are
handled by the sequencing component by means of task net transformation rules that insert appropriate
activities at execution time. For example, the side effect of moving is that all pose labels of known
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objects are tagged as inaccurate. However, a grasping operation can be performed only on objects for
which one knows the accurate pose. Thus, a transformation rule is triggered by the execution flaw and
replaces the grasping operation by a sensing operation followed by the original grasping operation.
The task nets, the transformation rules and the planner invocations contain the procedural knowledge
on how to execute a task. Since these are represented in a declarative way, they can easily be extended
and adjusted.

The knowledge base does neither hold a complete model of the environment nor is it always
up-to-date. In fact, it provides markers as references to distributed representations. This allows to
maintain skill specific aspects within the skills while the knowledge base provides the link between
the distributed models. Further details can be found in [130] and [128].

The overall architecture depends on a rich set of skills and the configurability of the skills to
behaviors. Furthermore, one needs a suitable approach to cope with the overall complexity of such
a system. Only a standard for system decomposition allows to cope with the complexity issue. As
stated in [31], in particular the lack of standards for components and the communication between
components makes it hard to implement a complex robotic architecture. Thus, the software concept
to implement such an architecture is attached great importance. Furthermore, behaviors have to be
balanced in terms of needed computing power, achieved reactivity and deviation from optimality and
completeness. However, they are allowed to fail cognizantly. Thus, balanced approaches for crucial
skills of mobile robots are also attached great importance.



Chapter 3

Motion Control

3.1 Introduction

Motion control and obstacle avoidance are two of the most basic skills of a mobile platform. Their
performance has a crucial impact on the achievable level of mobility. Of course, motion control and
obstacle avoidance belong to the core disciplines of robotics. Although there exists a considerable
amount of work on this topic, there is still a gap between reactive approaches and planning approaches
and many approaches are still restricted to a certain setting. Reactive approaches ensure high mobility
but suffer from many well-known shortcomings like local minima and are based on oversimplified
assumptions like a circular robot shape. Planning approaches do not depend on those simplifications
but suffer from impractical computational requirements in case they take into account any-shaped
contours or kinematic and dynamic constraints.

Mobile service robots have to be able to reliably carry out tasks even in partially unknown and
cluttered environments. Safe operation is becoming more and more important as many of the ap-
plications are in busy environments that cannot be highly engineered for the deployment of service
robots. Thus, neither kinematic nor dynamic constraints can be ignored without putting a risk onto
the environment and the mobile platform. Kinematic constraints restrict the possible movements of a
platform and are introduced by the drive system and its configuration. For example, a tricycle cannot
make lateral movements. Ignoring the kinematic constraints selects paths that finally cannot be exe-
cuted. The platform inevitably deviates from the designated path which can result in a crash. Dynamic
constraints can be ignored safely as long as the platform moves only at a very low speed since both
stopping and adapting to any new heading can be done without requiring much free space. However,
in case of higher speeds, for example, the required distance to come to a stop has to be considered.

Planning approaches are able to generate paths that take into account any relevant constraints. Of
course, there are also approaches that guarantee to return a feasible trajectory in case there exists one.
However, these calculations take so much time that the environment often has changed already till
the then outdated result gets available. Thus, first generating a complete plan that takes into account
any constraints and executing that after it got available is not an option. The ideal solution would be
to integrate planning into the control loop but planning is far too slow thereto. In [21], it is shown
that motion planning for a point in the plane with bounded velocity is NP-hard even when the moving
obstacles are convex polygons that move with constant linear velocities without rotation. Foundations
on motion planning in dynamic environments can be found in [51].

Thus, in a dynamic environment where one wants to drive with considerable velocities, one needs
a different approach. One option is to reduce the requirements on the planning approach such that

9
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it can produce results in a reasonable time and thus, it can be integrated into a control loop. For ex-
ample, instead of generating trajectories, one solely calculates feasible paths that do not specify any
velocities. Further simplifications ignore the shape of the robot and even its kinematic constraints
which considerably reduces the response time of the planning component. Of course, the more sim-
plifications are made at the planning level, the less can one guarantee that the provided path can be
accomplished by the mobile platform. Thus, one has to accept that the reactive execution deviates
from the path specification of the planning component and that there are even settings in which such
an approach is not able to reach a goal although a feasible trajectory exists. In principle, the task of the
planning component is often reduced such that it only gives hints on suitable intermediate waypoints.

The less is covered by the planning component, the more responsibilities lie on the reactive ex-
ecution component. It has to ensure safe operation under any circumstances. Although the reactive
component already resigns all aspects that can be handled only with a global approach, the decision
for the motion command of the next time step is still demanding. That is mainly due to the time
constraints since the response time of the reactive component directly influences the cycle time of
the control loop and thereby the allowed velocities and the tackled changes in the environment. In
particular, the reactive component has to be able to in-line process the updated information about the
current state of the environment. Thus, even reactive components introduce simplifications that also
range from ignoring the kinematic and dynamic constraints to ignoring the robot shape.

All feasible approaches react to dynamic obstacles by sufficiently often sensing the environment
and reacting to the perceived changes. Dynamic obstacles are only treated by means of a snapshot
without considering their actual movement. Feasible approaches that take into account obstacle dy-
namics all require simplifications that are not compliant with the focus of this work. In principle,
motion coordination is beyond the scope of this thesis.

3.2 The Problem

A severe limitation with many computationally feasible approaches is the assumption of a circular
shaped robot. Although many platforms are circular in their basic configuration, that often does not
hold anymore as soon as the platform has to carry a payload. That extends its contour so that a
circular approximation of the contour is typically such large that the robot, for example, does even not
fit anymore through regular sized doorways. Thus, approximating a non-circular robot with a circle
is not a solution since that not only results in an extremely conservative avoidance behavior but also
restricts the freedom of movement far too much. Often, the geometry of the robot is application driven
and cannot be chosen arbitrarily.

3.2.1 Contributions

This chapter presents a fast local obstacle avoidance approach that takes into account kinematic and
dynamic constraints. In contrast to other approaches, it can handle polygonal robot shapes and thus
overcomes the assumption of a circular robot shape. It is called the curvature distance lookup (CDL)
approach and was presented first in [126]. The shape can be adjusted at any time, for example,
depending on the presence or absence of a payload. It can take into account obstacle information
from almost any type of distance sensor and from various types of maps. Most important, even raw
laser range scans can be used without requiring any preprocessing or data reduction step.

Furthermore, the interaction of the reactive curvature distance lookup approach with a simplified
global path planner is presented. It allows to trade off reactivity and optimality without ever violating
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safety. Although this is achieved at the price of not being able to reach the goal in all cases, the
approach is balanced in terms of necessary computing power, achieved reactivity and deviation from
optimality and completeness. It is able to handle most of the standard settings in a reasonable way
and always ensures a safe motion state even with a polygonal robot shape.

Using the proposed approach for standard motion control and obstacle avoidance tasks and hav-
ing a full fledged path planner in store for those cases in which the proposed approach gets stuck,
allows to cope with almost any setting in motion control and obstacle avoidance. In the line of three-
layer-architectures, the presented approach covers the standard requirements on a motion control and
obstacle avoidance component of mobile platforms that operate in standard indoor environments.
One has to switch to other approaches only in case this approach gets stuck or for specialized and
highly demanding maneuvers that can neither be generated nor executed by the presented approach.
In those specialized and typically rare cases, one can accept both a high computational load and fur-
ther constraints like very low velocities or a static environment at least for the time of the specialized
maneuver.

3.3 Related Work

It is impossible to give an extensive survey on the rich body of work in the field of motion planning
and obstacle avoidance. The only chance is to restrict the presentation to those contributions that
address the very same subdomain. Thus, many approaches are not considered in detail since they
are either not able to cope with a changing environment or require far too much processing power or
focus on aspects that shall not be covered by the proposed approach. In particular, no approaches are
considered that go beyond the assumption of a two-dimensional world as is for example needed for
outdoor applications.

Although motion coordination is beyond the scope of this thesis, an interesting approach is the
idea of velocity obstacles [40] that takes into account the obstacle dynamics. However, it is left
open how to detect these in a typical setting of a service robot. Furthermore, the approach does not
consider kinematic constraints and also assumes circular shaped robots. The output of the algorithm
is a heading and a velocity and it selects only such a heading for which no collision can occur at any
point of time from now on. Thus, the original approach gets into trouble as soon as it is surrounded
by walls as is the case in any indoor environment.

Getting a motion estimate by a laser range finder in a typical service robotic scenario is tackled
in [91]. It focuses on motion coordination and extends the velocity obstacle approach to incorporate
reasoning about other agent’s navigational decision processes. A practical solution is achieved but, of
course, also only by making simplifying assumptions.

Early work in the field of local obstacle avoidance algorithms just determined a new heading with-
out taking into account any kinematic or dynamic constraints. A prominent example is the potential
field approach [90]. In its original idea, it is very sensitive to local minima [97]. Of course, the clas-
sical approach has been extended to either improve the driving behavior [88] or to overcome local
minima [38]. However, both approaches assume a circular shaped robot.

Even though configuration space approaches [103] are able to deal with kinematic constraints,
cluttered environments and any-shaped contours, they cannot be applied to dynamic environments
due to the complexity of the mapping of obstacles into the configuration space. These approaches are
mainly applied to manipulators with many degrees of freedom and a static environment. Contributions
address the problem of the high-dimensional search space [87].

The elastic band approach [124] is a quite general framework for the execution of planned paths.
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It represents a path by a curve in the configuration space with the properties of an elastic band. A
once planned path is adjusted to sensed changes in the environment and its behavior can be illustrated
by means of an elastic rubber band that gets deformed by moving obstacles while keeping some
smoothness properties. It provides an interesting balance between the planning component and the
execution component since the planned path gets adjusted incrementally. However, a path always
maintains its topological properties so that the elastic band approach often results in a suboptimal path
when there are moving obstacles or the path even gets invalid so that one needs replanning. However,
the more fundamental problem of the elastic band approach is related to its representation of free
space. Since the elastic band integrates the path modification into the control loop, the adjustment of
the elastic band has to be done very efficiently. That, however, presumes knowledge about the free
space around a path and again, a circular approximation is used to reduce the processing time. An
extension of the elastic band approach to non-holonomic robots is presented in [89].

The steering angle field method [39] is one of the rare approaches that has been applied to a
rectangular robot with a tricycle or equivalent kinematic. All steering angles are rejected that belong
to paths colliding with an obstacle within a velocity-dependent time-interval. Different selection
functions can be used to determine the final steering angle among a set of admissible ones. However,
the approach solely computes a steering angle, and velocity control is an iterative process between the
steering angle field module and a pilot module.

The curvature velocity method [140] and the dynamic window approach [47] are related to the
steering angle field approach. In addition to kinematic constraints, these also take into account dy-
namic constraints. The curvature velocity method formulates the local obstacle avoidance problem as
one of constrained optimization in velocity space. The lane curvature method [142] further improves
that approach by overcoming problems due to the assumption of solely moving along circular arcs.
The dynamic window approach also operates in velocity space. Dynamic constraints are used to re-
duce the velocity search space to values reachable within the next cycle. To allow for suitable cycle
times, all these approaches assume circular shaped robots.

The vector field histogram (VFH) [12] transforms the two-dimensional environment into a one-
dimensional histogram from which a heading for the motion of the robot is selected. It completely
ignores dynamic and kinematic constraints. The approach was extended to the VFH+ method [150]
that provides a very rudimentary form of taking into account kinematic constraints. A heading of
the VFH approach is rejected under some circumstances that depend on a to be defined minimum
curvature. The approach still does not correctly consider kinematic constraints and also assumes a
circular shaped robot.

There are many approaches that extend purely reactive approaches by integrating some kind of
planning. The VFH* [151] extends the VFH/VFH+ idea by integrating a look-ahead step. Of course,
the type of local minima that can be circumvented is directly related to the size of the look-ahead.
Nevertheless, addressing the problem of local minima does not make any improvements with respect
to handling robot shapes and kinematic constraints.

The global dynamic window approach [14] integrates the recomputation of a NF1 navigation func-
tion [99] into the objective function of the dynamic window approach. The navigation function is
computed prior to the movement. Inside the control loop, only a narrow region of the free space
connecting the goal and the current configuration is updated. The considered region is incrementally
widened as soon as no path can be found due to obstacles. The objective function of the dynamic
window prefers such motion commands that follow the gradient of the NF1 function at the current
position of the robot.

The tight integration of the navigation function into the control loop has the advantage that the
gradient of the NF1 function at the current position always directs along a shortest path to the goal.
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However, the challenge is to update the gradient fast enough in case of perceived obstacles. Thus, only
a narrow region is considered for updating within the control loop. Since the gradient has a substantial
impact on the result of the objective function, an outdated gradient strongly directs the robot towards
the not yet considered obstacle.

Another drawback of the tight integration of the navigation function into the objective function
concerns the velocity control. The local gradient does not give any hints on the further characteristic
of the path. Thus, even if the navigation function provides an optimal path, its execution often does
not meet expectations since the robot is not able to follow the gradient once it accelerated due to free
space. A typical situation is a hallway in which the robot accelerates and then misses the door to an
office.

An advantage of the tight integration of a navigation function into the control loop is the option
to perform the path planning in the configuration space as mentioned in [13]. Then, the local gradient
at least takes into account the shape of the robot. However, one can avoid collisions only in case
one always sticks to the planned path which makes the reactive component obsolete. If one relies on
the reactive component, then that has to be able to take into account the robot shape. As soon as one
makes the usual circular assumption there, one looses the advantages of a configuration space planner.
By the way, even a partial update of a three-dimensional configuration space normally requires far too
much time to be done within the control loop. Furthermore, one also would need an efficient way to
translate perceived sensor data into configuration space obstacles.

Thus, the tight coupling in the above form is not feasible in case one wants to exploit it by means
of a configuration space planner. The tight coupling is obsolete as soon as the reactive component is
not able to consider the same constraints as the planning component. Planning in the configuration
space and executing the path with an approximated circular shape, for example, inevitably results in
deviations from the planned path. Then, however, one should not encounter better results with the
above described tight integration than with the here proposed loose coupling that requires the reactive
component to already handle the shape constraints and that exploits the idea of intermediate waypoints
instead of integrating a fine-grained path into the objective function.

The approach presented in [145] performs the planning in the 5-dimensional
���������	�
��������

space.
This allows to overcome the problem of a too high velocity before introducing a sharp turn. An���

-search is supported by numerous heuristics that make the search problem feasible. One of the
heuristics is to first search a path in the

�������

plane that defines a corridor for the subsequent search

in the 5-dimensional search space. Thus, it is not obvious, how one can efficiently circumvent the
circular shape assumption without deeply interfering with the chosen heuristics. Nevertheless, the
interesting idea of using the 5-dimensional

���������	����������
space is that this planning system can also

produce clothoidal trajectories that are naturally needed in many cases of exactly passing a goal point.
The approach presented in [4] is based on similar ideas as the curvature distance lookup method

and the authors thus refer to the CDL approach. They do not use lookup tables and perform the
distance calculation online. However, that can be done only as long as the polygonal contour is as
simple as a rectangle. Even then, only a subset of laser scan points is used. However, their experiments
further confirm the robustness of this class of approaches.

3.4 The Curvature Distance Lookup Approach

Motion execution algorithms use current sensor information to determine a motion command for the
next time step. An approach that is particularly well suited for robots operating at high speed is the
dynamic window approach since it takes into account kinematic and dynamic constraints. However,
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with reasonable computing power, for example, it is not able to process raw laser range scans and
it thus requires preprocessing for data reduction. However, the far most limiting constraint is the
assumption of a circular robot shape. The presented curvature distance lookup approach extends the
dynamic window approach such that it can handle any-shaped robots while still being able to consider
kinematic and dynamic constraints. Furthermore, the presented extension reduces the computational
load such that one can even use raw laser range scans without any data reduction. This section first
presents the dynamic window approach that is subsequently extended to the curvature distance lookup
approach.

3.4.1 The Dynamic Window Approach

The dynamic window approach is able to handle kinematic and dynamic constraints but assumes
a circular robot shape. The description is geared to [47] where further details can be found. The
dynamic window approach is designed for mobile robots that are equipped with a synchro-drive. A
motion command of a synchro-drive is a set of

��������
values. The translational velocity

�
and the

rotational velocity
�

can be set independently of each other. A synchro-drive can adopt to arbitrary
headings only in case it is not moving. As soon as the translational velocity is non-zero, it follows a
circular arc whose curvature is determined by the ratio of the rotational and the translational velocity.

The dynamic window approach assures safe operation at all times by selecting only such motion
commands that allow the mobile platform to come to a stop before collision. The search for the next
motion command is carried out in the space of velocities. The dynamic window is a discretized part of
the

��������
-plane that is spanned by all values of the translational velocity

�
and the rotational velocity�

that are reachable from the current
��������

setting within the next time step without exceeding the
maximum acceleration and deceleration values. Each grid cell of the dynamic window represents a
motion command

��������
that results in a circular trajectory. The motion command is admissible only

if the free space along the circular trajectory is sufficient to come to a stop. From the set of admissible
velocities, an objective function selects the most appropriate combination of

�
and

�
. It can take into

account the progress towards the goal and can prefere high translational velocities, for example.
For the selection of the next motion command, the dynamic window approach solely considers one

time step. For deciding whether a
������� 

tuple is admissible, it considers the remaining distance along
the resulting path. The available free space has to be sufficient to come to a stop without colliding with
an obstacle independently of the required time. Repeatedly applying the dynamic window approach
results in piecewise circular paths.

Figure 3.1 shows the velocity space and the dynamic window as introduced in [47]. The space
of motion commands

���
of a synchro-drive is spanned by the maximum and minimum values of the

translational velocity
�

and the rotational velocity
�

. The dynamic window
���

takes into account the
limited accelerations and restricts

� �
to those

������� 
tuples that can be reached within one time step. It

is centered around the current settings of
���

and
���

. Let 	�
 and 	�� denote the maximum translational
and rotational accelerations.

������ ���������� ����� ����� 	�
������ ������ 	�
��!�"�$# � �%�&� ����� 	��'�(�"� ������ 	��)�(�"�*#,+ (3.1)

Each grid cell of the dynamic window represents a motion command
��������

that defines a specific
curvature. For each curvature, one has to calculate the collision free path length - �/. �10 �32 

when
driving with curvature

.
given the obstacles

0
and the shape

2
of the robot. In case of the dynamic

window approach, the representation of the shape of the robot solely consists of the radius of its
circular shape and the obstacles are represented by obstacle lines as shown in figure 3.2.
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Figure 3.1: The velocity space and the dynamic window as introduced in [47].
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Figure 3.2: Example environment of the DWA taken from
[47].
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Figure 3.3: Distance calcula-
tion of the DWA taken from
[47].

The distance calculation of the dynamic window approach is shown in figure 3.3. It calculates
the points of intersection between all obstacle lines and both the inner and the outer trajectory. Then
the minimum angle ������� between the robot and all intersection points is determined. That allows to
calculate the drivable arc length -  �����	� ��
 ��������  �
 ���������  ��
 ��������� . The resulting arc length - can be
converted into an angular distance �  -�� ��
 ��������  �
 ���������  .

For each
��������

tuple in the dynamic window
� �

, it now has to be checked whether both the
translational and the rotational component can achieve zero velocity on the remaining free path length.
A

������� 
tuple is admissible only if both the translational and the rotational velocity are below the

maximum allowed velocities regarding the remaining distance.

������ ���������� � �"! # ��- �/. �10 �32  � 	 
%$ �&�� �(' �/.  ) �*�+! # � . �!- �/. �10 �32  ��	 ��$ �&�� �,' �/.  + (3.2)

Let 	 
%$ �&�� �(' �/.  and 	 �-$ �&�� �(' �/.  be the accelerations for breakage. It is important to note that	 
%$ �&�� �,' and 	 �-$ �&�� �(' have to be chosen such that the brake maneuver takes place with the desired
curvature. Depending on the maximum values for deceleration, either the translational or the rotational
deceleration is the limiting part.

.  �
�  ! 	 ��$ �&�� �,'	 
%$ �&�� �(' (3.3)
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By the way, the dynamic window approach as described in [47] always solely considers the maxi-
mum values of breakage acceleration for 	 
%$ �&�� �,' and 	 ��$ �&�� �,' . However, the maximum values define
a curvature that is different from that of the considered

��������
tuple. Thus, the remaining free space of

the considered
��������

tuple is checked against the curvature of the maximum decelerations that is dif-
ferent to the curvature of

��������
. It seems that this so far has not attracted attention since the rotational

component typically provides very high accelerations compared to the translational component. Thus,
in most of the cases,

��������
tuples are rejected due to the translational component without having to

consider the rotational component. However, it makes a big difference as soon as the translational
velocity is very low. However, with a circular robot and a synchro-drive, a high rotational component
with a very small translational command is like turning in place so that no collisions occur wih a
circular shaped robot.

� �  ����� � ���)���
(3.4)

All
������� 

tuples that are in the set
� � cause no collision and can be reached within the next time

step. Thus, it is safe to select any motion command from
� � . However, to achieve a goal oriented

motion, one has to apply an objective function � ������� 
that selects the most appropriate

��������
tuple

from
� � .

� �������   � ����� 	 -
	��� ��������  �� ��-
	���� ��������  � � � ����� . 	 � � �������  (3.5)

��� 	 -
	��� �������   � � �
� � � �!�"� �� (3.6)

-�	�� � �������   - �/. �10 �32 
� (3.7)

� ����� . 	*� � �������   �
� � ��� (3.8)

The different terms of the objective function are normalized to
�  � � # . The heading measures the

alignment of the robot with the target direction.
�

is the goal heading relative to the robot and must
not be confused with a heading at the goal. The dist term favours curvatures that provide a longer
distance until collision.

�
is the maximum considered free path length. Finally, velocity prefers

high translational velocities. Thus, the objective function � ������� 
favours high speed, curvatures that

provide a greater distance to collision and curvatures that head into the goal. The parameters
�

,
�

and
� weight the different terms. Typical values are

�  #"!# 
,
�   $! #

and �   $! #
.

One can easily integrate further restrictions on
� � . Often, for example, it makes sense to adjust

the velocities according to the side clearance of the robot which is denoted by
� � . Furthermore, one

should forbid unsafe
��������

tuples by introducing
�&%

. For example, it is not allowed to drive too fast
through narrow curves.

� � is then given by
���'�)���(�'� �)� � � � ��% .

3.4.2 The Problem of Calculating the Distance to Collision

The time-consuming operation of the dynamic window approach is the calculation of the remaining
distance along a circular path. Each

������� 
tuple results in a curvature and for each curvature inside

the dynamic window, one has to determine the distance - �/. �10 �32 
. The distance - not only depends

on the curvature
.
, but also on the shape of the robot and the obstacle configuration. Since the obstacle

configuration changes constantly due to the movement of the platform and also due to the dynamics
of the environment, one has to calculate - within the control loop of the dynamic window approach.
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Figure 3.4: The distance calculation in case of an any-shaped robot and high volume sensor data.

Figure 3.4 shows an any-shaped robot and high volume sensor data as, for example, provided by
a laser range finder. To calculate the minimum distance for one curvature, one needs to intersect all
obstacles with the shape of the robot. In case of � � curvatures and a polygonal shape with ��� segments
and �-� obstacles, one gets complexity

� � � � � ��� � � �  which is
� � ���  .

The dynamic window approach reduces the complexity by assuming a circular shape. There, it
is sufficient to solely consider the inner and the outer trajectory of the robot. Furthermore, one can
easily reject those obstacles that do not lie in the annulus of the inner and outer trajectory. Even then,
only obstacle lines are assumed to provide a significant data reduction compared to raw laser range
scans.

3.4.3 The Curvature Distance Lookup Approach

The curvature distance lookup approach is the extension of the dynamic window approach to any-
shaped robots. It uses lookup tables for the distance calculation and divides the distance calculation
into an offline and an online part.

3.4.3.1 The Key towards an Any-Shaped Contour

A decisive role is played by two observations. The first observation is that the distance should be
calculated in the robot frame instead of the world frame. Using the robot frame, obstacles at the same
relative position contribute to the remaining distance in the same way independently of where this
setting occured in the world frame. Of course, the effect of a relative obstacle position is different for
each curvature. None the less, one can now precalculate the effect of any relative obstacle position on
any curvature. By discretizing the local environment of the robot and the curvatures, one can use a
lookup table to store those values. The discretization of the curvatures is already given by the discrete
dynamic window. Thus, the lookup table � � � � � � � �  maps a relative cartesian position

� 	 � � 	��  and a
curvature 	 � to the remaining free distance - , that is � � � � � � � �  � 2 
	�� 	 � � 	 � � 	 � �� � -  .

The offline part is used to perform the time-consuming calculation of the intersections of the
possible obstacle locations with the robot shape. The robot shape can now be of any complexity since
that part of the calculation is removed from the control loop. The control loop solely executes the
online part of the distance calculation. First, the indices

� 	 � � 	��  of all grid cells occupied by obstacles
are determined. For a curvature

.
with the curvature index 	 � , the distance - �/. �10 �32 

is then the
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minimum over all distances - �  � � � � � � � �  � 	 � � 	 � � 	 �  of the occupied cells. The online part can be
performed very fast.

The second observation is that the number of curvatures is only linear in the number of
�

and
�

values. That is crucial since otherwise the size of the lookup tables would not be reasonable anymore.

3.4.3.2 The Offline Calculation of the Lookup Tables

We now introduce the various lookup tables used by the curvature distance lookup approach. The
� � � � � � � �  lookup table plays the key role of the CDL approach.

Curvature For each
� 	$
 � 	 �  tuple of

���
, one needs to know the curvature index 	 � . The lookup table

� � � � 
 � � � �� maps the index
� 	$
 � 	*�  of a velocity tuple of

� �
onto the curvature index 	 � .

� � � � 
 � � � �� 	�� 	 
 � 	 �  � � 	 �  (3.9)
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Figure 3.5: The curvature lookup table for mapping velocity indices into a curvature index.

Figure 3.5 shows the structure of the lookup table. Its size is determined by the discretization
of the velocity space. The curvature is the reciprocal value of the gradient of a curvature line. It
is sufficient to distinguish the curvature of the boundary cells only and to assign the inner cells that
curvature index that represents the closest curvature value. There are five distinguished curvature
indices listed in table 3.1.

Table 3.2 lists the typical values of a RWI B21 platform. Excluding the distinguished curvature
indices, the first quadrant has

� � 
 � � , � � � � �   � � 
 � �   � � � � � 
different curvatures with

� 
  
������
��	��
� � � �  ����������	��
�� .

Acceleration For each curvature
. � , one needs to know the maximum accelerations for breakage� 	 
%$ �&�� �,' $ � � � 	 ��$ �&�� �,' $ � �  . It depends on the curvature whether the translational or the rotational accel-

eration is the limiting factor.

� � � � �� 	�� 	 � �� � 	 
 $ �&�� �(' $ � � � 	 ��$ �&�� �(' $ � �  (3.10)
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	 � $ � No motion at all. The curvature and the radius is undefined.

	 � $ ��
 Motion straightforward with positive translational component and without any rotational component.
The curvature is zero and the radius is undefined.

	 � $�� 
 Motion backwards with negative translational component and without any rotational component.
The curvature is zero and the radius is undefined.

	 � $ ��� Clockwise rotation in place. The curvature is undefined and the radius is zero.

	 � $�� � Counterclockwise rotation in place. The curvature is undefined and the radius is zero.

Table 3.1: The five distinguished curvature indices.

� ���	� -1000 ��� � � � � ��� +1000 ��� � � � � �  � 10 ��� � �� ����� -70 -"� �� � � � � � +70 - � �� � � � �  � 1 - � �� �
number of curvatures per quadrant 336
total number of curvatures 1349

Table 3.2: A typical set of values of
� �

.

The size of this lookup table corresponds to the number of different curvatures. The content of the
lookup table is determined according to equation 3.11.

if
.   � 	 
%$ �&�� �,' $ �  	 
 $ �&�� �(' $ � ���	 �-$ �&�� �(' $ �   

else if
. �� � 	 
%$ �&�� �,' $ �   

	 �-$ �&�� �(' $ �  	 ��$ �&�� �,' $ � ���
else

. � �
	�� ��

 ��� � �������� � ��

 ��� � �����

� 	 
%$ �&�� �,' $ �  	 
 $ �&�� �(' $ � ���	 �-$ �&�� �(' $ �  . � 	 
 $ �&�� �(' $ � ���
.�� � 	�� ��


 ��� � ������ � � ��

 ��� � �����

� 	 
%$ �&�� �,' $ �  � 	�� ��

 ��� � ��� ��

	 �-$ �&�� �(' $ �  	 ��$ �&�� �,' $ � ���

(3.11)

Distance For each grid cell and each curvature, the distance lookup table stores the remaining dis-
tance until collision with the grid cell when driving with the respective curvature. It stores a tuple
that contains the distance and the angle even though one can convert both by means of the curva-
ture. However, due to the singularity of the curvature and due to numeric problems, it makes sense
to always hold both values. Of course, either the distance or the angle value is invalid in case of the
distinguished curvature indices.

� � � � � � � �  	�� 	 � � 	�� � 	 �  � � - ��� $ ���%$ ��� � �-� ��$ ���%$ ���  (3.12)

The distance lookup table is shown in figure 3.6. Its size is determined by the discretization of the
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Figure 3.6: The distance lookup table.

cartesian space of the surroundings of the robot and by the number of curvatures. A typical setting
uses grid cells of size 100 � 100 ��� �

to represent a
�

3000 � 3000 ��� �
section with the robot in

the center. Thus, the representation of the cartesian work space consists of 3721 grid cells. Refering
to the above example, the distance lookup table consists of 5 019 629 entries.

boundary of cell trajectory

Figure 3.7: The calculation
of the entries of the distance
lookup table in case of zero cur-
vature.

radius

obstacle approximation

center point
of motion

Figure 3.8: The calculation
of the entries of the distance
lookup table in case of a regular
curvature.

of motion
center point

Figure 3.9: The calculation
of the entries of the distance
lookup table in case of zero ra-
dius.

The distance lookup table requires to calculate the free distance from the robot to any of the grid
cells of the cartesian work space. That has to be done separately for each curvature in � � � � � � � �  . Figure
3.7 shows the special case of a straight motion. The boundaries of the cell trajectory form straight
lines. First, one has to calculate the intersection points � of those lines with all shape elements of
the robot. Then, one has to find all vertices of the robot shape that lie within the boundaries of the
cell trajectory and add these to � . In case of a circular shaped robot part, one only considers the
segment of the circle that lies within the boundaries of the cell trajectory. One then selects that point
that gives the shortest distance to the occupied cell. Normally, however, the circular shaped parts are
approximated by a polygon. Since that affects the complexity of the offline calculation only, it does
not matter to introduce a high number of contour segments. Finally, the remaining free space for all
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points in � is calculated and the minimum value is stored in � � � � � � � �  . In case of a straight motion,
the angular distance is set to zero.

Figure 3.8 shows the distance calculation for a regular curved path. In order to simplify the
calculations, the rectangular grid cell is enclosed by a circle. Each curvature defines a center point
of motion that forms the center point of circles for the inner and the outer boundaries of the cell
trajectory. In principle, the same calculations as before are performed, but now the relevant parts of
the contour of the robot lie within an annulus. The distance calculation is performed with respect to
the obstacle approximation. By means of the curvature, one can easily calculate the angular distance
from the arc length and vice versa.

Figure 3.9 shows a motion with zero radius that is turning in place. Now, the center point of
motion is equivalent to the center point of the vehicle. In principle, one again performs the same
calculations but now only considers the angular distance. The distance values of those entries are set
to zero in � � � � � � � �  .

Since those calculations are performed offline, their complexity is relevant only in case one has
to calculate a new lookup table. That is necessary in case one picks up a payload. However, one
normally already holds several instances of the lookup tables to cover the most often needed shapes
of the mobile platform so that one can switch between them at runtime.

Miscellaneous The lookup table � � � �  is used by the constraint
� � to restrict the velocities depend-

ing on the obstacle configuration. For each grid cell of the cartesian work space of the surrounding
of the robot, it provides maximum values for the translational and the rotational velocity. Thus, de-
pending on the side clearance, for example, one can reduce the speed of the robot. It depends on the
application how one sets these values. Even though the robot only selects safe motion commands, re-
ducing the velocities in case there are obstacles nearby often looks less aggressive and more trustable
which is an important factor towards acceptance.

� ��� �  	�� 	 � � 	��  � ��� ��� �  $ � � $ � � ��� � � � ($ � � $ � �  (3.13)

The lookup table � % �����&� � � �� is used by the constraint
��%

to reject all
��������

tuples that result
in an unsafe operation. For example, certain

������� 
tuples might cause the robot to topple down.

Furthermore, driving narrow curves with high speed is dangerous. Due to the limited viewing angle
of the laser range finder, for example, new obstacles can suddenly become visible so that there is no
chance to react anymore.

� % �����&� � � �� 	�� 	*
 � 	 �  ���� � ��� (3.14)

3.4.3.3 Online Use of the Lookup Table

The online use of the lookup tables is summarized in figure 3.10. It shows the control loop of the
curvature distance lookup method and illustrates how the various lookup tables are included into the
selection of the motion command.

The current state of the robot defines the dynamic window ➀. The not allowed
��������

tuples
inside the dynamic window are masked by means of the � % �����&� �(�  � lookup table ➁. By means of the
� � � � 
 � � � �� lookup table ➂, all curvature indices belonging to allowed

��������
tuples of the dynamic

window are accumulated in the set of curvatures � ➃.
All available obstacle information is mapped into the grid representation of the cartesian work

space of the robot ➄. The laser range scan is neither preprocessed nor is there any data reduction step.
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Figure 3.10: The online use of the lookup tables.

Typically, the laser range scan is the latest integrated obstacle information since it allows to overwrite
outdated obstacle configurations. These are typically provided by longterm maps since these require
several validations before they adapt to a new obstacle configuration. The result of this step is a list of
indices � that denote occupied grid cells.

The next step is to determine the remaining free space ➅. Both � and � only contain a small subset
of the set of curvature indices and the set of obstacle grid cells, respectively. Thus, the following step
can be performed very fast even if it has to be executed for each curvature index 	 � � � .

- � 	 �   ������ � � $ � ���
	�� - � 	 � � 	�� � 	 �  (3.15)

� � 	 �   ������ � � $ � ���
	�� � � 	 � � 	�� � 	 �  (3.16)

(3.17)

Finally, one has to determine the maximum velocities accepted as nice operation of the robot ➆.

� ��� �  $ � ���  ������ � � $ ��� �
	� � � � �  � 	 � � 	��  (3.18)
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� ��� �  $ � ���  ������ � � $ � ���
	� � ��� �  � 	 � � 	��  (3.19)

Now, everything needed to calculate
� � is available. The maximum accelerations for breakage ➇

are looked up with calculating
� �

.

���  � ��� � ��� �  � � � �+! # � - � 	 �  � 	 
%$ �&�� �,' � 	 �  ) � � �+! # � � � 	 �  � 	 �-$ �&�� �(' � 	 �  + (3.20)� �  � ��� � ��� �  � � � � � � � � ($ � � � ) � � � � ��� �  $ � ��� + (3.21)��%  � ��� � ��� �  ����� � ��� �  allowed by � % �����&� � �  � + (3.22)

(3.23)� �  � �'�)���(� ���)�)� � �)��% (3.24)

3.4.3.4 Motion Control Strategies

The standard objective function in form of equation 3.5 is designed to move the robot towards the goal
with high velocity. It neither considers stopping at the goal point nor the heading of the robot at the
goal point.

Stopping at a Goal In case the robot wants to stop at the goal, it has to favor such velocities
that allow the robot to come to a stop at the goal while still approaching the goal with a reasonable
speed. Thus, the velocity term uses a different evaluation function as soon as the euclidean distance- � ��� � ��� � ����� �����  between the robot and the goal is below a threshold - � � � �  .

� ����� . 	*� � �������  
��� ��



 ����� if - � � - � � � � 

�� � ��� 
	� if - � � - � � � �  ) �
	 � � � � �  � 
if - � � - � � � �  ) �
� � � � � �  � (3.25)

� � � � � ��  ! # ��- � ��� � ��� � ����� �����  �� � 	 
%$ �&�� �,' $ � ��� (3.26)

The target velocity
� � � � �  � is the maximum velocity that allows the robot to stop on the distance to

the goal. Since the distance is approximated by the euclidean distance, it is either correct or optimistic
with respect to the path length executed by the robot. Furthermore, the damping factor � reduces
the maximum acceleration 	 
%$ �&�� �,' $ � ��� for calculating

� � � � �  � . Thus, the goal is approached without
relying on the maximum deceleration. The objective function favors

��������
tuples with a translational

component that is close to
� � � � � �� and ignores

������� 
tuples with a translational velocity above

� � � � �  � .
The discontinuity in the evaluation function when exceeding

� � � � �  � does not cause any troubles since
the evaluation function only selects among admissible

��������
tuples. Thus, exceeding

� � � � � �� due to a
translational velocity near the discontinuity in the evaluation function is not a safety issue and would
only result in overshooting the goal region. However, since the calculation of

� � � � � �� is based on a
damped maximum acceleration,

� � � � �  � is always a conservative value such that the robot comes to a
stop for sure.

The above objective function tries to approach the goal on a straight line in such a way that the
robot comes to a stop at the goal point. Of course, a goal region is used to decide whether the goal has
been reached. The configuration of the size and shape of the goal region depends on the motion task
that is executed. Mainly, a circular region is used. The objective function does not take into account
the heading of the robot at the goal. In case of a synchro-drive robot, one can adjust the heading of the
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robot by turning in place provided that the current obstacle configuration allows to do so. The CDL
approach correctly handles the case of turning in place.

Passing a Goal Passing a goal point is more pretentious than it appears in the first place. A typical
setting is shown in figure 3.11. The robot moves along the hallway with a high translational velocity
since the goal is still far away. Due to the dynamic constraints, it is then not able to make the sharp
turn and thus misses the turn-off. Even worser is the lateral displacement shown in figure 3.12.

robot

large distance
goal

Figure 3.11: Making a sharp turn. Figure 3.12: Goal with lateral
displacement.

However, one can cope with such settings much better if one knows when one has to expect a
sharp turn. It is sufficient to place an intermediate waypoint

��� ��� � ��� � �	� �  at the turn-off as shown
in figure 3.13. One can now reduce the translational velocity depending on the relation between the
robot and the intermediate waypoint

���
. As soon as the euclidean distance of the robot to

���
is below

a threshold - � � � � , one calculates
�& � ��� �� � � � � ( ��� equals to

�
in equation 3.6). If

�
is above a

threshold
� �

� � � , one sets
� � � � � �� to reduce the translational velocity. The generation of such waypoints

is described in section 3.5.1.

� ����� . 	 � � �������  
����� ����



������ if - � � - � � � �

������ if - � � - � � � � ) � � � �
� � �

�� � ��� 
	� if - � � - � � � � ) � � � �
� � � ) � 	 � � � � �  � 

if - � � - � � � � ) � � � �
� � � ) � � � � � � �  �

(3.27)

� � � � � ��  ����� ��� �
� � �-$ ���	� � ! # �!- � ��� � ��� � ����� �����  �� � 	 
 $ �&�� �(' $ � ���  (3.28)

The effect of this heuristic is to slow down to a minimum speed
� �

� � ��$ ����� as soon as
���

is ap-
proached but only in case the angular deviation is too big. As soon as the translational velocity is
reduced, the objective function is able to adjust its heading towards

���
. As soon as the robot is close

enough to
���

, activating the original goal point turns the robot into the desired direction. The min-
imum velocity

� �
� �$��$ ����� keeps the robot moving but is low enough that the robot can make a sharp
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alpha 2

alpha1

Figure 3.13: Heuristic to approach
intermediate waypoint.

generated trajectory

Figure 3.14: Approaching interme-
diate waypoint.

turn even in a narrow environment without requiring such high rotational velocities that all curvatures
towards the goal point are forbidden. With the RWI B21 platform,

� �
� � �-$ ���	� is set to 150 ��� � � . It is

important to note, that
� �

� � ��$ ����� is only the preferred minimum translational velocity. The objective
function always operates on the set of motion commands that never cause a collision. The robot is
not slowed down and it even accelerates again if its angular deviation is below the threshold since in
those situations, the robot has a chance to adapt to the desired heading even with a high translational
velocity.

Figure 3.15 shows some typical settings. The robot does not slow down in case the angular
deviation is low ➀. In ➁, the same setting but with a different heading at the goal is shown. Since
the angular difference now is too large, the robot is slowed down. In ➂, it is assumed that the robot
is not able to head towards

���
for some reasons. Thus, as soon as the angular difference is above the

threshold, it again gets slowed down.

With this heuristic, the robot prefers a straight motion towards
���

. It slows down the robot if
its angular deviation expressed by

�
is too high. One has to recognize that this heuristic does not

approach
���

with the desired heading but slows down the robot such that the robot has a chance to
adapt to the desired heading once it passed

���
. The typical behavior is illustrated in figure 3.16. The

robot tries to approach
���

by a straight motion which results in a wall-following as soon as it is close
to the wall. Due to its angular deviation, it is slowed down until it drives with

� �
� � ��$ ����� when it reaches���

. In case of an intermediate waypoint, one now switches to the next waypoint. Normally,
� � is just

determined such that it points towards the next goal point. Due to its low translational velocity, the
robot is now able to turn into the desired direction. Thereby, it circumvents the corner of the wall very
tightly.

Of course, this heuristic decelerates the robot to unnecessarily low translational velocities in case
of sharp turns. Due to the limited viewing angle of the laser range finder, for example, sharp turns are
typically situations in which not yet seen obstacles come into the field of view. Thus, it is a good idea
to slow down if one has to expect not yet perceived obstacles that might even be very close.
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Figure 3.15: Slowing down due to angular deviations.

Using a Circular Trajectory There are many cases where tightly moving along corners with an
any-shaped robot is not a feasible approach since one can get stucked. Such a situation is often
encountered with narrow doorways, for example. Under these circumstances, it is much better to
approach the goal on a circular trajectory as shown in figure 3.17. The circular trajectory can be used
either to stop at a goal point with a desired heading or to pass a waypoint with a desired heading. As
soon as the robot comes close to the waypoint

���
➀, one tracks a point � ➂ that moves along a circle.

towards
���

➀. In case
���

is the goal point, � further follows the circle and in case of passing
���

, �
follows ➃. The tracking is aborted as soon as the robot reached or passed

���
. The circle

.
tangential

to ➀ and through ➁ and the tracking point � on the circular arc respectively on the prolongation ➃

are calculated within each cycle of the control loop. A typical value of the distance - � between the
robot and � is 500 ��� . Following the moving tracking point results in a dog curve. The accuracy of
reaching ➀ depends on the distance - � . Of course, that can be considered by taking � from a larger
concentric circle

. .
such that the robot follows

.
when � is moved on

. .
.

Again, one has to remind that � is only tried to be approached by the objective function. In case �
lies in or behind obstacles, the objective function keeps the robot moving along the obstacle until it can
head into the direction of � . As shown in figure 3.18, the robot then simply follows the wall. Of course,
that does not work in all settings but it is a good heuristic in many of the encountered situations. To
approach - � , the above objective functions are applied and thus, the translational velocity foremost
depends on - � so that the robot drives with a reasonable low translational velocity.

It is important to note that in case of passing the waypoint, the effect of -�� if used as shown in
figure 3.17 is a smoothing of the curvature near the discontinuity at ➀. That smoothing already results
in nice tracking points that can be approached smoothly by the objective function. However, - � cannot
be enlarged arbitrarily since then the robot deviates too much from the circular trajectory. Thus, the
distance that can be used to smooth the curvature discontinuity is limited and thus, the maximum
translational velocity is also restricted. In case the robot drives too fast, there is no way to fast enough
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Figure 3.16: Making a sharp turn into another hallway.

bring down the rotational component and the robot overshoots the desired heading. Again, due to
the dynamic window, the robot of course always only selects such motion commands that are safe.
Thus, when overshooting, it is already slowed down such that it does not collide with any walls in
the example settings. In principle, an optimized velocity profile for the above situation would require
to consider clothoids, for example, if one wants to pass the waypoint with a nonzero translational
velocity.

3.4.3.5 Other Kinematics

The approach can also be applied to kinematically equivalent configurations like a differential drive.
For the differential drive, further constraints in the

��������
space apply that are easily incorporated.

Figure 3.19 shows an early implementation for a tricycle kinematic. Instead of the
������� 

search
space, the

������� 
space was used with

�
the translational velocity and

�
the steering angle.

3.5 The Path Planning Component

The trajectory generation of the curvature distance lookup approach suffers from local minima due
to the purely local decision on the next motion command. However, in many cases, it is nevertheless
able to successfully reach a goal region without further support from a global component. Most
important, the CDL approach always ensures a safe operation even in an unknown environment. Thus,
deviating from a goal specification might result in getting stucked but not in a collision. For many
circumstances, it is sufficient to provide suitable intermediate waypoints that are then approached
by a trajectory generated by the CDL approach. It is even better to provide only few intermediate
waypoints since that gives the CDL approach most freedom on how to approach them.

3.5.1 Path Planning at the Geometric Level

The geometric path planning component is an independent component that can be configured to in-
teract with both the map building component and the motion execution component. Further details of
these interactions are described in section 3.6. The geometric path planning component gets the so-
called current map �

� 	 $ � 	 $ � � $ � � $ � � $ � ��
from the map building component. It is a grid map with origin��� � ��� �  , size

��� � ��� � 
, cell size

. �
and obstacle growing � � . It is always aligned to both the world
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Figure 3.17: Using a circular
trajectory. Figure 3.18: The tracking point in

or behind an obstacle.

coordinate frame and the cells of the global grid map. The resolution must always be such that no
cells of the global grid map are divided into sections when they are forwarded to the current map. In
particular, the current map is neither rotated nor moved with the robot. Its offset, size and resolution
is configured by the sequencing layer in connection with the configuration of the overall motion task.
Its parameters are adjusted by the sequencing layer in accordance with the task execution progress
like reaching another topological section.

Figure 3.20 shows the wave propagation algorithm that works on the map �
�
. The wave prop-

agation is started from the cells marked as goal cells. Goal cells do not have to be adjacent so that
the robot can approach the closest goal region among different alternatives. One can either use the
illustrated wave propagation that even does not store distance values in the grid cells or any other NF1
technique [99]. Obstacles are grown by an optimistic obstacle growing since the motion execution
component with the CDL approach takes care to keep distance to obstacles.

Figure 3.19: A tricycle kinematic.
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Goal Region

Figure 3.20: Path planning by wave propagation.

second waypoint generated
when robot here

first waypoint

second waypoint (goal)

Figure 3.21: Effect of the shorten-
ing heuristic.

The important part is the path shortening heuristic illustrated in figure 3.21. It follows the planned
path starting at the current robot position until the straight line shortening interferes with an obstacle.
The prior cell on the path defines the next waypoint

��� �
. The heading of

��� �
directs to

��� � . The
waypoint

��� � is obtained by applying the shortening heuristic a second time but now starting at the
waypoint

��� �
. In case

��� �
is a goal point, the heading depends on the goal point specification.

Since the geometric path planning is applied continuously, it generates a new waypoint as soon
as one can further shorten the path. Thus, the resulting overall path is often close to the

� � optimum
path. Of course, a new waypoint is also obtained in case the path changed either due to a changed
obstacle configuration or in case the robot had to avoid obstacles such that there is a better path to the
goal region from its current position.

3.5.2 Path Planning at the Topological Level

The topological path planning component is located at the deliberative layer. Figure 3.22 shows a
section of a topological map. The vertices

�
, � and � represent offices and the vertices � , � and�

different hallways. The hallway � is divided into different sections, namely � � , � � and � � . The
solid edges are enriched by the parameters for configuring the current map �

� 	 $ � 	 $ ��� $ � � $ � � $ � ��
and the

goal region. The dashed edges solely contain distance information to be able to correctly estimate the
distances. The distance from

�
to � , for example, is estimated by

� � � � � � � � � and that from�
to � by

� � � � � � � � � �
� � . With respect to executing the topological path, the dashed edges

and the subsections � �
of � are of no relevance and then only � is considered as shown on the right

of figure 3.22.

In the example, the grey shaded map patch belongs to the bold edge. Thus, when driving from
� to � , the map patch is set such that the office � is contained in the map patch as well as that part
of the hallway that serves as goal region. When driving from � to � , the map patch is adjusted to
contain the hallway and the part of � that serves as goal region.



30 CHAPTER 3. MOTION CONTROL

G H1 H3 I

CA

I

CA

HH2 G

B

office office office

hallway

current map

B

office office office

current map

hallway

Figure 3.22: Path planning at the topological level.

3.6 The Integration

3.6.1 Approaching Maneuvers and the Robot Shape

Approaching maneuvers are particularly challenging with respect to collision avoidance in a setting
as shown in figure 3.23. The robot approaches the table with its deployed manipulator to pick up
the disc. In case one takes into account the manipulator, one cannot approach the table since the
manipulator collides with the table. In case one ignores the manipulator, one takes the risk that the
manipulator collides with an object in the environment while it moves towards the table. Thus, the
motion execution component allows to configure two shapes that are evaluated both within the control
loop. For each shape, one can specify polygonal shaped masks � that describe regions that are not
considered for collision avoidance. These can be either specified relative to the robot coordinate
system � � or in the world coordinate frame � � . Furthermore, one can specify obstacles that have to
be considered but that cannot be perceived by the sensors. These are also defined by closed polygons
either relative to the robot � � or in the world coordinate frame � � .

Figure 3.23: Approaching maneuvers and the robot shape.

In the example in figure 3.23, the first shape
2 �

solely contains the circular contour of the base of
the robot. The second shape

2 � contains the full shape of the robot including the manipulator. For
it, a mask � � in the world coordinate frame is defined to mask out the table and the disc is added
as obstacle in the world coordinate frame � � since it, for example, cannot be perceived as obstacle
while approaching the table. The pose of both the table and the disc are sensed prior to invoking the
approaching maneuver so that the masks correspond to the current pose of these objects. Outside the
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table, the complete shape of the robot is taken into account so that the manipulator cannot collide with
an obstacle. It can even not collide with the disc. However, the table can also be approached without
causing any harm since the shape of the enclosure prevents the robot from colliding with the table. As
remark, approaching the disc with the manipulator is not possible with approximating the shape by a
circle.

The mask � � is used in case the manipulator is in the field of view of the laser range finder. That
is needed with some pick-and-place operations. However, the robot then is driving almost blindly so
that these kind of maneuvers are very unsafe.

3.6.2 Interaction of the Motion Execution and the Geometric Path Planning

The geometric path planning component and the motion execution component are loosely coupled.
The motion execution always holds only one waypoint

���
that can be overwritten on-the-fly by the

geometric path planning component. In particular, there is no fine-grained path forwarded to the
motion execution that has to be followed as close as possible. That allows the motion execution to
apply its objective function over longer periods of time without encountering a change of the waypoint.
Furthermore, that relieves the interaction between both components from complicated mechanisms to
synchronize the current robot position with the path specification in case of updates and deviations.

The motion execution instantaneously reacts to a new goal configuration without violating any
vehicle constraints. As long as the robot is far away from a waypoint, it tries to approach the waypoint
by directly heading towards it which complies with the shortening heuristic. Thus, there are good
chances to be able to successfully apply that strategy. In case there are any changes, the motion
execution component anyway gets an update of its waypoint. As soon as the robot comes close to
a waypoint, the further behavior depends on the selected objective function. Due to the optimistic
obstacle growing, the intermediate waypoint

���
might be too close to an obstacle. However,

���
need

not to be hit exactly and it is sufficient to enter a circular region with
���

at its center.
Due to the shortening heuristic, intermediate waypoints are normally placed at such locations

where something relevant with respect to motion execution happens. Thus, an intermediate waypoint
carries the information that in case of being far away from it, one does, for example, not have to expect
any sharp turns. An intermediate waypoint provides just that information that is needed to slow down
to not miss a door or a turnout. Due to that characteristic of the intermediate waypoints, they can
be used as basis for refined motion control strategies as described in section 3.4.3.4. In contrast
thereto, with approaches that tightly integrate a navigation function and that follow the gradient at
the fine-grained level of the cell size, one does not have any outstanding waypoints. Integrating an
appropriate look-ahead is not easy since the fine-grained path makes only sense in case it considers
the vehicle kinematics, for example. Then, however, it is already smoothed in some sense and finding
critical sections is not an easy task. Resigning the intermediate waypoints results in the well-known
drawbacks of the objective function that prefers high velocities such that sharp turns are missed.

3.6.3 Interaction with the Global Path Planner

In case of passing a waypoint
���

, the motion execution switches to an objective function that favors
driving into the direction of the heading of

���
until an updated waypoint is received. In case of

reaching a goal point, the sequencing layer is notified about that event. In case the goal is not already
the final goal but is only an intermediate goal on the topological path, the motion execution was
configured such that it continues to drive into the direction of the heading of the last goal point. In
case no heading is defined, the robot just tries to move straightforward, always monitored by the CDL
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approach. Meanwhile, the sequencing layer gets the parameters of the next path segment from the
topological map and performs the reconfiguration of the components. Since that is done very fast, the
robot typically does not move more than 100 ��� until it gets the next valid waypoint. In this way,
the robot switches to the next path segment of the topological plan without stopping.

Of course, due to the simplified path planning approach, the robot can get stucked but that is
detected and reported to the sequencing layer that is responsible for configuring the overall navigation
task.

3.6.4 Survey on the Involved Components

Figure 3.24 shows the involved components in case of a typical navigation task. The configuration
and the wiring of the components as well as the monitoring of the execution progress is done by the
sequencing layer. Other configurations, for example, connect a vision based object tracking compo-
nent with the motion execution component so that the robot tracks an object without colliding with
obstacles. All experiments were performed with a translational speed of up to 1 � � � . The laser server
provided 8 � . 	�� � � � with each consisting of 361 distance measurements and a field of view of 180
degrees. All shown components are run on a single computer (dual Pentium Pro 200 MHz) on-board
the robot without using it to full capacity.

3.7 Experiments and Results

3.7.1 Moving with Deployed Manipulator

Figure 3.25 shows the RWI B21 robot moving amongst stationary obstacles with a deployed manip-
ulator. The trajectory is generated by the motion execution component without the geometric path
planner. The shape of the robot is correctly modelled including the deployed manipulator. The overall
path is approximately 7 � and the robot almost continuously drives with 800 ��� � � . The obstacles
are perceived during the motion by means of the laser range finder and are not known previously.

Figure 3.26 shows two persons blocking the path of the robot. In the following, images are referred
to by (row, column). In image (2/3), the robot turns to the right to avoid a collision. As can be seen
by the heading of the robot, the persons jumped in front of the robot such that it could just avoid a
collision. In image (3/1), one can see how close the robot passes the person. With a circular shape
approximation, the robot would have to keep a much greater distance.

3.7.2 Moving in Cafeteria of FAW

Figure 3.27 shows the RWI B21 platform driving through the cafeteria of FAW. Again, the environment
is completely unknown to the motion execution component. Solely the self-localization component
has a model in form of laser range scans to continuously adjust the pose of the robot. The path
specification consists of two points, the first approximately at the position of the robot in image (3/3)
and the second in that part of the cafeteria visible in image (5/3). Again, no geometric path planner
is used and the trajectory is generated reactively by the motion execution component. The narrow
passage between the pillar and the staircase is shown in image (1/1). The robot only slightly slows
down at the narrow passage and again moves with approximately 800 ��� � � in the other parts of the
cafeteria.
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Figure 3.24: A typical wiring of the components for a navigation task.

3.7.3 Motion Control under Dynamic Constraints

Again, solely the motion execution component is used without any geometric path planning and with-
out any prior knowledge about the environment. In all examples, the robot accelerates to approxi-
mately 900 ��� � � without significantly slowing down during the movements. The specification of
the path consists of two waypoints, the first in the section behind the obstacles and the second at the
starting point of the experiments.

Figure 3.28 shows the robot passing the obstacles and then returning towards the starting point.
The robot takes the opportunity of the opened passage to approach the starting point on the shortest
path. The robot perceives the obstacle configuration by means of the laser range finder as set of
distances. It then reacts to the set of obstacle points without extracting any higher level descriptions
like the width of a passage, for example.

In figure 3.29 the same motion task is executed. It drives towards the first waypoint on the shortest
path. When the robot already heads towards the passage, it is closed to force the robot to circumvent
the obstacles. Due to the high translational velocity and plenty of free space, the robot passes the
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Figure 3.25: Moving with deployed manipulator amongst stationary obstacles.

obstacles in a big bend before it heads to the starting point.
In figure 3.30, the robot is started with an offset to the right. Thus, the shortest path towards the

first waypoint is to drive in-between the obstacles. Opening the passage causes the robot to take the
opportunity to reach the waypoint on the shortest path. As soon as the robot passed the passage, it
is closed again. Thus, when the robot returns, it heads towards the free space besides the obstacles.
However, the obstacle configuration is changed just while the robot is already heading towards the
previously free section and the robot makes a turn to avoid a collision. Since it drove towards the
obstacles with maximum velocity due to the previously free space, the turn is achieved with a very
high rotational velocity. Thus, due to its dynamic constraints, it is not able to turn right to take the
new opening. Thus, it drives a loop and takes the new opening then.

3.7.4 Moving with High Speed in the Robotics Evaluation Area

All motion tasks in the robotics evaluation area at the basement of FAW are performed with using the
overall navigation system including self-localization, geometric and topological path planning and
map building. Figure 3.31 shows a sequence taken from a motion along the hallway towards room
three. In the hallway, the robot accelerates to 900 ��� � � and passes the first room to its right with high
speed as shown in image (3/3). In sufficient time before approaching room three, the motion execution
component slows down due to the encountered angular deviation of the heading of the intermediate
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Figure 3.26: Causing the robot with a deployed manipulator to circumvent persons.

waypoint. Thus, the robot is able to turn into room three by passing the narrow doorway as shown in
image (5/3).

3.7.5 Moving with a Deployed Manipulator in the Robotics Evaluation Area

Figure 3.32 shows the robot executing a pick-and-place task in the robotics evaluation area at the
basement of FAW. The robot approaches the narrow opening to the hallway and due to the evaluation
of the intermediate waypoints of the geometric path planning component, the robot slows down. It
then moves tightly along the corner to enter the hallway with the desired heading to proceed towards
the next room.

3.7.6 Grasping a Disc from a Table

Figure 3.33 shows the robot performing an approaching maneuver. The goal point has to be ap-
proached with the specified heading since turning in place would cause the manipulator to crash into
the discs. The approaching maneuver uses two configured shapes to be able to approach the table.
Prior to the approaching maneuver, the pose of the table and the poses of the discs are measured by
means of the vision system. The overall accuracy of the vision based measuring and the approaching
maneuver is such that the robot is able to grasp a disc with a diameter of 150 ��� with a gripper with
an opening of 200 ��� .
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3.8 Conclusion

Of course, the loose coupling of a simplified global path planner and a reactive component can neither
ensure shortest paths nor can one ensure that all intermediate waypoints can be reached by the reac-
tive component. There exist obstacle configurations that require complex maneuvers which can be
performed only by a corresponding motion planning and execution system. Due to ignoring the kine-
matic constraints and due to an optimistic obstacle growing, the geometric path planning component
can even return paths that are not executable by the mobile robot. However, all these circumstances
are detected by the motion execution component and can thus be reported to the sequencing layer that
then decides on how to proceed.

However, the reactive component can ensure safe operating states under any circumstances. In far
most of the situations, the trajectories resulting from the loosely coupled reactive component and the
simplified path planner are even close to the optimal trajectory. Such a combination is able to handle
most of the standard situations in motion control and obstacle avoidance without suffering from the
simplifications of the standard reactive approaches nor the computational requirements of full fledged
configuration space planners. Therefore, one neither has to resign reactivity nor safety nor the ability
to circumvent local minima.

An important aspect of the loose coupling of the geometric path planning component and the
motion execution component is their concurrent activity so that each can contribute to the overall
progress according to its responsibilities during the whole navigation task.

The configurability of the objective function allows to select among different motion control
strategies and even in unknown environments one can drive safely. The chosen shortening heuristic
plays a crucial role in the interaction of the geometric planning component and the motion execution
component.

The overall navigation approach trades off reactivity, safety and optimality in such a way that it
represents a balanced approach for most of the standard settings but at the price of not being able to
reach a goal in any case. Its main strength is the ability to operate safely in a cluttered and changing
environment while only imposing a very low computational load on the system and while still resulting
in paths that are close to the optimal one.
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Figure 3.27: Moving in the cafeteria of FAW.
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Figure 3.28: Taking the opportunity of an opened passage.
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Figure 3.29: Provoking the robot to circumvent the obstacles by blocking the passage.
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Figure 3.30: The effect of the dynamic constraints.
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Figure 3.31: Moving with high speed in the robotics evaluation area.
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Figure 3.32: Moving with a deployed manipulator in the robotics evaluation area.
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Figure 3.33: Grasping a disc from a table.
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Chapter 4

Localization and Mapping
Outline of a Computation Scheme

4.1 Introduction

Navigation tasks require knowledge about the own position and the goal position. Furthermore, the
relationship between both has to be known. There are numerous ways to represent the position of a
robot and the adequate approach depends on the environment and the task of the robot. A topological
position can consist of the designator of a room, for example, and a topological map solely represents
the connectivity structure of regions. For many tasks in robotics, however, a metric representation
is most adequate where locations are represented by coordinates in a global frame of reference. The
pose is the two-dimensional position in cartesian coordinates including the heading.

As soon as the robot moves greater distances, dead reckoning is not sufficient anymore and ex-
ternal references are necessary to keep the pose error bounded. External references can be provided
in many different ways ranging from a global positioning system (GPS) that already provides abso-
lute poses over artificial landmarks to appearance based methods. The latter use raw sensor data as
signatures and determine the pose by aligning current sensor data with signatures.

A global positioning system neither provides the required accuracy nor is it available in indoor
environments. Rather, sensor values provide information about the environment and are matched
against a model of the environment to determine the pose of the robot. The model of the environment
is called map and its representation depends on the kind of sensors and external references used for
localization.

A map can be acquired in many different ways. In case of artificial landmarks, for example, one
can use a theodolite to get the reference positions after placing the markers. Then, however, the initial
effort of deploying the mobile robot in a new environment is inacceptable for many applications. The
obvious idea is to use the robot itself to build the map. With appearance based methods, there is even
no other option and even with many feature based approaches, it is nearly impossible to produce a
map in any other way than by the robot itself. However, the map can be built accurately only if the
robot knows its position.

In principle, localization and mapping is a chicken and egg problem. Localization requires a map
and for map building the pose of the robot has to be known. There are two different approaches to
tackle this problem. The first approach is to build an absolute map and the second one to build a
relative map.

An absolute map encodes the absolute positions or poses of landmarks. These can be beacons,

45
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features or signatures. Most approaches employ a statistical view where the pose of the robot and the
positions or poses of landmarks are represented by stochastic variables. The solution to the simulta-
neous localization and map building problem (SLAM) is to estimate the vehicle pose and the positions
or poses of the landmarks jointly [143]. The robot pose and the positions or poses of all landmarks
form the state vector and simultaneous mapping and localization is the task of maintaining an estimate
of the state vector and the corresponding covariance matrix. Most implementations use the Extended
Kalman Filter (EKF) for updating [143] [100].

However, stochastic mapping scales poorly which is known as map scaling problem. The storage
costs are

� � � � 
with � the number of mapped landmarks. The computational costs of each update step

are at least
� � � � 

and a naive implementation even requires
� � � �  [59]. The complexity results from

the fact that one has to maintain the covariance matrix. Reobservations of landmarks are necessary
to reduce the estimation error of the landmark positions. Thereby ignoring the covariance matrix
results in overly confident estimates and leads to filter divergence. The covariance matrix represents
the correlations between the entries of the state vector and properly assigns the information of a
reobservation to the affected poses. In the limit, the covariance matrix represents a fully correlated
state vector and the lower bound on the covariance associated with any single landmark is determined
only by the initial pose uncertainty of the robot when first seeing the landmark [115]. The fundamental
importance of maintaining the correlations of the entries of the state vector to achieve convergence of
the SLAM process is explicitly emphasized in [22].

It now also becomes apparent why a single grid map [111] without making extensions cannot be
used for the SLAM problem. As soon as one closes a loop of assumed positions, one has to propagate
the detected error back through the map. However, a grid map solely represents the fused result and
does not provide any means to sort out the contributions of individual perceptions once these are
integrated into the map.

Closing a loop is also a challenge for the EKF-based approaches. The initial linearization is
performed when adding a landmark to the state vector and it cannot be modified anymore after inte-
gration. The linearization errors often cause the map to diverge given a sufficient number of landmark
updates [83] [50].

A relative map consists of a network of spatial relations where nodes represent the poses or posi-
tions of landmarks and edges represent the relative relations between nodes. A node can represent any
kind of feature and even signatures consisting of raw laser range scans. The relative relations can be
provided by odometry, beacon detection approaches or appearance based approaches for localization,
for example. A relative map has two significant properties. First, it requires less storage since the
maximum number of relative relations is given by � � � � �  � # with � the number of nodes. In particu-
lar with appearance based approaches, there are far less relations since not all signatures can be related
to each other by means of the signature based localization approach. Secondly, each relative relation
can be updated independently of the others. Thus, the major advantage of a relative map is that one
can collect all kinds of spatial relations between landmarks without having to take into account any
interdependencies to other spatial relations.

However, a relative map is not a suitable representation for many robotic tasks and it needs to be
converted into an absolute map. The absolute poses of the nodes can be derived by means of a seeding
point and traversing the relative map. Typically, however, a relative map is redundant and provides
alternative paths to a node. Since an estimated relative map possesses errors and inaccuracies, the
obtained absolute poses depend on the chosen path. In principle, it makes sense to place the nodes
such that the residual error with respect to the mapped relations is minimized.

A relative map has significant advantages with respect to obtaining a globally consistent map.
One can solve for all absolute poses at once and one can also handle non-linearities much better than
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with an EKF-based approach for an absolute map. Since a relative map maintains spatial relations
between nodes, closing a loop is not a problem as long as one is able to correctly insert the closing
link. Converting the relative map into an absolute map immediately results in new absolute node
poses that are placed such that the error detected at the time of closing the loop is correctly assigned
to node poses.

The relative map is the natural representation for appearance based approaches. The graph of
spatial relations between reference frames links the signatures. The corresponding absolute map
places the signatures such that these give a consistent model of the environment. One class of appear-
ance based approaches stores laser range scans in the nodes and obtains the spatial relations by scan
matching [104] [105] [106]. The advantage of the scan matching approach is that it does not depend
on specific features in the environment.

This chapter presents an outline of a computation scheme for simultaneous localization and map-
ping. The foundations of the applied covariance intersection approach [58] as relevant for robot
navigation appear to be a topic of ongoing research [81].

4.2 The Problem

Simultaneous localization and map building requires the absolute poses of the signatures. In case of
incrementally building a map, new signatures and spatial relations to already mapped signatures are
added to the relative map. Links to already mapped areas influence the absolute poses of the signa-
tures. In particular, closing a loop requires the recalculation of the absolute node poses to compensate
the pose jump at the closing link. Since mapping is done with a relative map and localization by
means of an absolute map, the missing link is the conversion of the relative map into an absolute
map. The problem is that calculating the absolute node poses requires to solve an error minimization
problem. The complexity is such that the absolute node poses are not easily determined in parallel
to map building. Thus, the robot would have to stop each time a new link is added to perform the
necessary calculations before it could proceed with acquiring the next signature.

Lets consider a network of �  �
nodes � � � � � � ! ! ! � � � where every node represents a pose vector

� �  ��� � ��� � � �-�  . A link � ���  ������� � between the nodes � � and ��� represents a measurable
difference of the two poses. Of course, � ��� is nonlinear when considering poses but can be linearized
in the standard way by means of Taylor expansion. We refer to � ��� as the measurement equation and
furtheron only consider the linear case with � ���  � �

�
� � . An observation of � ��� is modelled as�

� ���  � ���  �	� ��� where �	� �
� is a random Gaussian error with zero mean and known covariance
� ��� . According to [105], the goal is to derive the estimates of the poses given the set of measurements�
� ��� and given the covariances � ��� by combining all the measurements. Furthermore, the covariance
matrices of the estimated poses � � have to be derived based on the covariances � ��� .

As described in [104], one criterion of optimal estimation is that of minimum variance. The
node poses � � are determined in such a way that the conditional joint probability of the derived pose
differences � ��� given their observations

�
� ��� is maximized. In case of mutually independent and

Gaussian observation errors, that is equivalent to minimizing the following Mahalanobis distance.

� �
��$ �

�
���

�
� � � �

� ��� �� � � ���� �
���

�
� � � �

� ���  (4.1)

As explicated in [104, pages 86-88], the measurement equation can be expressed in matrix form
as � ����

where
�

is the � � -dimensional vector of the concatenation of � �
�
� � � ! ! ! � � � , � is the

incidence matrix with all entries being 1, -1 or 0 and � is the concatenation of the pose differences
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� ��� . Without loss of generality, we set � �   
as seeding point and � �

�
� � � ! ! ! � � � are relative poses

from � � . Then,
�

can be represented in matrix form where
�
� is the concatenation of the observations�

� ��� for the corresponding � ��� . � is the covariance of
�
� which is a square matrix consisting of the

covariance matrices � ��� as sub-matrices.

�  � �
�
� ��� �� � � � � �� � � � 

(4.2)

The solution for
�

which minimizes
�

and the covariance of
�

are given by

�  � � � � � � �  � � � � � � � �� (4.3)���  � � � � � � �  � �
(4.4)

In general, one has to deal with � � � � � sized matrices and solving the linear equation system
requires

� � � �  with
�  � � . This can be reduced to

� � � � 
by using a sparse matrix solver but

then the covariance matrix is not available. The covariances give valuable information about the pose
uncertainty during exploration. In case of linearizations, the procedure is applied iteratively using the
intermediate results as new linearization points.

Due to the complexity, a different approach is required to calculate the absolute poses of the
nodes. Of course, starting from scratch each time is not necessary and in the linear case, an iterative
and relaxation based update rule can be derived from equation 4.1. The index 	 is iterating over all
nodes linked with � � .

�  �
�

�
�
�
�
� �

�
� � � �

� �
�  � � � ���� �
� �

�
� � � �

� �
�  (4.5)

� � �   �� � ��� ��  �� �
�
�
� � � ���� 
	� � � �

�
� � � ���� �

� ��  �
� �
�  (4.6)

Since
�

is a quadratic term, the iterative scheme converges to the single minimum. In the lin-
earized case, approximately 5 % of the linearization points are updated in parallel to the relaxation
process which then typically converges to a configuration close to the global optimum. However, the
relaxation converges only very slowly and relaxation schemes typically require

� � � � 
updates to re-

duce the error by a constant factor [45]. Nevertheless, a relaxation based approach considerably saves
computational resources by not always starting from scratch and is thus a viable approach to address
the complexity issue.

The update rule shown in equation 4.6 only provides the pose estimate of a node and no covari-
ance matrix for the estimate. The covariance matrix is not only relevant with respect to knowing about
the current pose uncertainty during exploration, but also provides valuable information when closing a
loop. In that case, the uncertainties of the poses of the neighboring nodes give information on where to
move the node under consideration. Thus, knowing about the uncertainties of the neighboring nodes
can accelerate the relaxation when closing a loop. However, the covariance matrix can not easily be
determined by a local update rule since updating a node introduces cross covariances between nodes
which therefore are not representing independent information anymore. Successively updating the
nodes with a Kalman filter based on local information immediately results in pose estimates with zero
covariance and therefore leads to overly confident estimates. Taking into account the cross covari-
ances, however, requires global knowledge for performing a local update. Thus, the problem is to find
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a computation scheme that provides a conservative covariance matrix in case the cross covariances are
unknown. Such a computation scheme can be applied with a local update rule for a relaxation based
pose estimation.

4.3 Related Work

Of course, there is a huge body of work available in the field of filter design and sensor fusion as well
as on various aspects of localization, map building and simultaneous localization and map building.

Sensor fusion in the presence of unknown cross covariances has already been addressed by [149]
and [82]. Unknown or constrained cross correlations are also addressed in [66] [65]. Foundations of
sensor fusion are explicated in [153] and [64].

Important results on the structure of SLAM can be found in [32], [33] and [115]. The classical
approach is to use an extended state vector that contains the absolute poses of the nodes and the
vehicle pose. Due to the complexity of the update step of the EKF, many efforts focus on reducing
this computational complexity. Update schemes range from a pessimistic solution [80] over various
kinds of decoupling [101] [78] [23] [59] to postponement of updates [92]. In [148], for example,
the sparsity of the information matrices is exploited. The stability of covariance inflation methods is
addressed in [81]. In general, EKF based approaches suffer from the initial linearization error when
adding a feature to the state vector. Problems also arise with particle based SLAM [110] where large
uncertainties require a very large number of particles.

An approach for pose tracking and map building based on dense laser range scans without extract-
ing features is described in [104] [105] [106]. The original approach has been extended and compared
to other pose tracking methods [61]. An extension to incremental mapping of cyclic environments is
presented in [60]. A better way to estimate the covariance matrix with scan matching is presented in
[7].

In [35], the slowly converging update rule shown in equation 4.6 is used for mapping. However,
this rule does not allow for local calculations of covariances as stated in [34]. In [49], a multigrid
approach for accelerating relaxation-based SLAM is proposed. It provides an interesting solution
to solving the equation system in an incremental and fast way. Again, no covariance matrices can
be obtained. However, using a relative map has the advantage that one does not suffer from initial
linearization errors as is the case with EKF based approaches.

In principle, even though the general structure of the SLAM problem is well understood, it is still
a field of ongoing research mainly focusing on kinds of mechanisms to address the complexity issue.

4.4 The Approach

The relative map is considered as probabilistic filter network where each node and each edge are en-
dowed with a random variable. The filter network is interpreted in such a way that incoming estimates
at a node are fused to result in a better estimate for the node under consideration. The chosen filter
is also known as covariance intersection [82]. It belongs to a class of filters that perform convex
combinations of random variables in the information space for fusion purposes. The most prominent
example of this class of filters is the Kalman filter [86].

The following notation is used throughout this section. A � -dimensional column vector
� 	 � � ! ! ! � 	 � 

is denoted by � , a � � � matrix by
�

. � �  � � ������� �
is a random variable with expected value� �

� �   � and covariance �
	�� � � �   �����
. In the

#
-dim case the covariance of � � and the cross

covariance between the random variables � � and � � are denoted by
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�
	�� � � �   � � 	 
�� 	 � 
�
	 � � 	 � � 	 �  �
	 �

� 	 � � 	 � 
� 	 
�� 	 � �� (4.7)

�
	�� � � � � � �   � �����
��� � � � �

����� � (4.8)

Since we only consider covariance matrices, we only have to deal with symmetric positive definite
matrices. We write

���	�
for two positive definite matrices if

� � �
is positive semidefinite.

The subsequent sections are mostly taken from the publication [129]. The accordant paragraphs are
not marked explicitly.

4.4.1 Filter Design and Covariance Intersection

In the following, convex combinations of random variables in the information space are considered.

Definition 1 (convex combination) Given two random variables � � and � � , then their convex com-
bination ��
 in information space with

� �&�  � � # is calculated as follows:

��
������� � �
	�� � � �  � �  � � � �  �
	 � � � �  � ��� � � � � � �
	 � � � �  � � � �  � � � �  �
	�� � � �  � � � � �
To clarify the presentation, the following abbreviation is introduced:

�
�  % � �
	�� � � �  � �  � � � �  �
	 � � � �  � � (4.9)

First, the expected value
� �
��
  and the covariance �
	 � � ��
  of the new estimate ��
 are calculated.

� �
��
   ��� � � � � � �
	 � � � �  � � � �  � � � �  �
	 � � � �  � � � � ��� � � � � � �
	 � � � �  � � � �

� �   � � � �  �
	 � � � �  � � � �
� � 

�
(4.10)

�
	�� � � 
   �
	 � � � � � � � �
	 � � � �  � � � �  � � � �  �
	 � � � �  � � � � ��� � � � �
	 � � � �
	 � � � �  � � � �  � � � �  �
	 � � � �  � � � � � � � �
 � � � � �
	 � � � �
	 � � � �  � � � �  �
	�� ��� � � �  �
	 � � � �  � � � �  �
	�� � � �
	�� � � �  � � � � � � � � �  �
	 � � � �  � � � �  �
	 � ��� � � �  �
	�� � � �  � � � � � � �
	 � � � �  � � � �  � � � �
 � � � � � �

�
	�� � � �  � �  � � � �  �
�
	 � � � �  � � � � � � �  �
	 � � � �  � � �
	 � � � � � � �  �
	 � � � �  � � � � � � �  �
	�� � � �  � � �
	�� � � � � � �  �
	�� � � �  � � � � � �

(4.11)

The fusion update obviously depends on the cross covariances. Thus, the following modifica-
tion of the covariance update is considered. Those fusion equations are also known as covariance
intersection [82] or gaussian intersection.
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Definition 2 (covariance intersection, CI) Given two random variables � � and � � , then covariance
intersection �

�
with

� �&�  � � # is calculated as follows:

�
	�� � � �  �  % � � �
� �
�
�  �  % � � � � � �
	 � � � �  � � � �

� � � � � � �  �
	�� � � �  � � � �
� � 

�

The expected value
� �
�
� 

of the covariance intersection is the same as
� �
� 
  of the convex

combination. However, the covariance �
	 � � � �  is defined independently of the cross covariances.
We have to prove that �
	�� � � �  never gets overly confident on the true covariance �
	 � � � 
  . This is
a very pessimistic approach since always highest correlations are assumed even in the case of fully
independent input variables. Of course, a random variable is not just a combination of expected value
and covariance. However, for filtering applications, one can substitute the currently known covariance
by one which makes the estimate more worse.

Lemma 1 (covariance enclosure) The covariance �
	�� � ���  is smaller in all directions than �
	�� � � � 
if and only if �
	 � � � �  � �
	 � � � �  .
Proof: So-called � -sigma contours provide a convenient graphical representation of a random vari-
able � � . The � -sigma contour of � � is defined by the points

���'� � �
� � ��� �
	�� � � �  � � ���)� � �

� � �  �

This term defines an ellipse for two dimensions respectively an hyperellipsoid for higher dimen-
sions. The covariance �
	 � � � �  is smaller than �
	 � � � �  in all directions if the corresponding � -sigma
contour of � � is completely enclosed by the � -sigma contour of � � . This is equivalent to

�������  � �
	 � � � �  � � �����	�  � �����	�  � �
	�� � � �  � � �����	� 
�
	 � � � �  � � � �
	 � � � �  � �

�
	 � � � �  � �
	 � � � � 

The last step holds due to the following lemma [71, page 471]:

Lemma 2 If
�

and
�

are positive definite, then
� �	�

if and only if
� � � � � � � .

We can now show that the covariance �
	 � � � 
  is always smaller in all directions than the covari-
ance �
	�� � � �  by proving that under all circumstances �
	 � � � �  � �
	�� � ��
  holds. Of course,

�
is the

same for calculating both �
	�� � � �  and �
	�� � ��
 
Lemma 3 (covariance bound) For any cross covariance with

� �&�  � � # : �
	 � � � �  � �
	�� � ��
  .
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Proof:

�
	 � � � �  � �
	 � � ��
   � � � � � � � � � �
�
	�� � � �  � �  � � � �  �

�
	 � � � �  � � � � � � �  �
	�� � � �  � � �
	�� � � � � � �  �
	�� � � �  � � � � � � �  �
	�� � � �  � � �
	 � � � � � � �  �
	 � � � �  � � � � � �
 � � � � � � � � � � � � ! ! ! # � � � � � � � � � ! ! ! # � � � � � � � �  � � � � �
	 � � � �  � �  �
	�� � � �  � �� �
	 � � � �  � � �
	�� � � � � � �  �
	�� � � �  � �� �
	 � � � �  � � �
	 � � � � � � �  �
	 � � � �  � � � � � �
 � � � � �  � � � �
	�� � �
	 � � � �  � � � �

� �  � �
	 � � � �  � � � �
� � 

�
� � �

 � � � � �  � � ��� � � �
with

�  �
	 � � ! ! !  positive definite. The result of � � � � � � � is positive definite, too, since
�

is symmetrically multiplied on both sides. Finally
� � � � �  �  

holds.

It now is known that these fusion equations can never lead to overconfident results even when
cross covariances are not known at all. However, one also has to show that the fusion equations
lead to improvements of the estimate since otherwise using them for fusion makes no sense at all. A
decrease of the covariance can be ensured by a proper selection of

�
.

Figure 4.1: The resulting ellipse always encloses the intersection independently of
�

. It also always
goes through the intersection points of the original ellipses. The dashed ellipses are the input ellipses
and the solid ellipse is the result of fusion. In the left figure, the smaller ellipse is also the fusion result.

We only consider covariances centered around the same arbitrary vector. The rationale behind a
common center is that both random variables can be translated by fixed vectors without affecting the
covariance matrices. Straight forward comparisons between covariance matrices are only possible as
long as either �
	 � � � �  � �
	�� � � �  or �
	�� � � �  � �
	�� � � �  holds. Then the corresponding � -sigma
contour of either � � or � � is completely contained in the other one as shown in figure 4.1. For
all other cases, the ellipsoids for inverses of the covariance matrices trivially intersect as shown on
the right side of figure 4.1. In this case, it is a reasonable behavior of a filtering algorithm that the



4.4. THE APPROACH 53

covariance of the new estimate encloses the intersection as tight as possible. It can be shown that the
convex combination of the inverses of the covariance matrices as used by the covariance intersection
exactly shows this behavior.

To determine the best estimate, the tightest ellipsoid enclosing the intersection has to be found.
The following is explicated for ellipses but the same also holds true for ellipsoids. The ellipse to the
level

.
of the convex combination has the volume

� 	�� � �������	� ��
 � ���� � � � � � � ���	� ��
  ���� �/.  �
 � . �
� ����� � � �
	 � � � �  � �  � � � �  �
	�� � � �  � �  � . � ! ����� � � � �
	 � � � �  � �  � � � �  �
	�� � � �  � �  � � # (4.12)

The smallest ellipse of this type is specified by

� 	�� � 	�� � $ �� ����� � � � �
	 � � � �  � �  � � � �  �
	 � � � �  � �  � � � (4.13)

An iterative solution to solve for
�

is available in [58]. A closed form solution for the two-
dimensional case has been derived by the co-author of [129].

One still has to show that the selected
�

always leads to a decrease of uncertainty. Since the
amount of uncertainty is compared by the volume of the resulting ellipsoid, one has to show that after
each update the following holds true:

����� � �
	�� � � � � � � 	�� � ����� � �
	 � � � � � � ����� � �
	�� � � � �� (4.14)

Since one gets �
	�� � � �   �
	 � � � �  with
�   

and �
	 � � � �   �
	 � � � �  with
�  �

and since
the value for

�
is searched in the interval

�  � � # , one at least gets either �
	�� � � �  or �
	�� � � �  . Thus,
one can make sure that the uncertainty is never increased.

4.4.2 Network of Random Variables

Lets now consider a relative map in form of a graph �  ��� ��� 
with
�

denoting vertices in the
graph. Edges are denoted by

��� �
�
�

.
� �
� denotes the directed arc between node

� � and node� � . The graph needs not to be fully connected and can contain loops. The set of all immediate
predecessors of a vertex

� � is denoted ! � � �  so that ! � � �  	  � � � �"� � � ��� �#� � . Each node
� � is

endowed with a random variable � � and each arc
� ��� with a random variable � ��� . Such a network is

called a probabilistic filter network.
The filter network is interpreted in such a way that incoming estimates at a node

� � via its immedi-
ate predecessors ! � � �  are fused to result in a better estimate for node

� � . The new estimate � ��� �� of

node
� � is calculated as � ��� ��  � � � � ��%$ � ��� � � ��  with $ denoting the compounding operator. The

result of � � $ � ��� is the vertex obtained when transforming � � via the edge � ��� taking into account
the uncertainty of � ��� . The transformation function to get from node

� � to
� � is thereto linearized.

The node to be updated is selected randomly. The best estimate of a node is then again propagated
to the connected nodes. Fusion is performed by covariance intersection since this avoids running into
problems due to unavailable cross covariances of incoming estimates. Furthermore, the updates of the
various nodes can be performed in any order and with different rates.

Of course, iteratively updating randomly selected nodes raises the question of convergence. Since
this goes beyond the scope of this thesis, a short description is given why these updates lead to steady
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states. First, no update ever increases uncertainty in the network. Secondly, there exists a lower
bound for the uncertainty of each node because the covariance intersection never gets overly confident.
Therefore, the covariance at a certain node in the network does not decrease anymore as soon as it has
reached that conservative bound given the incoming estimates. In the case of stable covariance values,
the expected values are stable as well due to the then stable values of

�
and the whole network is in

a steady state. This is also the global minimum with respect to the minimisation criterion applied at
each node.

4.4.3 Example in 2D cartesian space

Lets now consider a simple example in two-dimensional cartesian space. Nodes represent a position��� ���� �
and arcs the relative offset

� � ��� � �� between two nodes. The transformation function to get
from node

� � to node
� � is linear and can be written as

��� �� ���   � �
(4.15)

with

�  � �  �  
 �  ��� (4.16)

and
�  �

� � � � �
�  � . Then, the expected value of the transformed random variable and its covari-
ance matrix are given by

� �
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The cross covariance terms are zero since vertices and nodes are independent. An arbitrary node� � of the network is updated by calculating the transformation � � �� �� ��� � �� � � ���  �  for any node� � � ! � � �  and by then applying covariance intersection � � � � � �� � � ��  to get the new estimate � ��� �� .
Of course, the nodes are highly correlated but this can be ignored in the local update due to the
properties of the covariance intersection. The final state is reached if no update results in a change.

The example network is shown in figure 4.2. The network is built up incrementally in form
of an octagon and a link is only introduced to the immediate predecessor. The pose uncertainty is
increasing with the travelled distance. As soon as the loop is closed, the accumulated pose uncertainty
gets reduced since the shorter path to the same node gives better estimates. In the example, nodes
with the same distance to the origin show the same pose uncertainty after closing the loop and the
furthermost node has the largest pose uncertainty. This is obvious since each additionally crossed
edge adds further uncertainty. The variance of a node is equal to the variance of the initial node in
case there is at least one path involving only perfectly known edges.

Since the local node update rule can cope with any kind of correlated input, even the network
structure shown in figure 4.3 can be handled correctly by the iterative update scheme. This network
structure is known as Wheatstone bridge in electrical circuits.



4.4. THE APPROACH 55

incrementally built network

Start Node

closing the loop

Figure 4.2: The start configuration is indicated by dashed ellipses and the final configuration after
closing the loop by solid ellipses. The network is built up incrementally and the pose errors are
balanced as soon as the loop is closed.
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Figure 4.3: The ,,loop in the loop” problem. The network is built incrementally and the first loop is
closed when returning to the start node S. Then the robot proceeds to node 1 and then to 5. Connecting
node 1 and 5 results in two loops which have to be adjusted.

4.4.4 Application to Map Building and Localization

A probabilistic network for mapping and localization is built by means of scan matching [106]. We
apply the extended scan matching described in [61]. Each vertex endows a laser scan and the pose��� ��� ���  �

of that scan. An edge represents an offset
� � ��� � ��� � �  �

between two nodes.
During movement, a vehicle model is used to estimate the next pose based on odometry values. A

new scan is taken and labeled by the current robot pose. The newly taken scan is added to the network
by connecting it to the predecessor node. Both the relative relation based on odometry and the relative
relation based on scan matching are added.

Furthermore, the newly taken scan is matched against the anchor vertex
� �

. When starting,
� �

is
the first vertex in the probabilistic network. It is set to the newly added node if

� �
cannot be matched

anymore with the newly taken scan. The effect of this is that regions that are similar in terms of
visibility all get a link to the same anchor vertex based on scan matching. It is important to note that
the uncertainty of the link based on scan matching does not depend on the distance of the reference
poses but only on the quality of scan matching. Thus, this approach gives much better spatial relations
than the distance dependent uncertainties of the odometry. The number of remaining scan points after
applying the projection filter [106] is a reliable measure to decide whether scan matching can still be
applied.

A link is also introduced to an older vertex of the probabilistic network if the scan of the network
closest to the current pose can be matched with the newly added scan. However, a loop is closed only
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if the projection filter reports a high number of points visible from both poses and if scan matching
reports a low variance on the result. A much better approach that is based on comparing map patches
is presented in [60].

Nodes are selected randomly and are updated applying the above described formulas. Density
transformations are done by a linearized model of the link transformations using the Jacobian of the
transformation equations. The new pose of the currently added node is taken as new robot pose.

Applying covariance intersection to a relative map determines node poses such that the variance
of their pose is minimized. In principle, all contributions of all possible paths from the starting node
to the node under consideration are fused in such a way that a conservative estimate results. The
pessimistic approach is necessary since spreading the uncertainty of the initial node through a highly
connected network results in highly correlated contributions to the pose of a node.

Nodes are not placed such that the residual error with respect to the measured relative distances is
minimized. Minimizing the variance of the pose of a node is like placing a node according to the most
certain path from the initial node towards it. However, applying covariance intersection provides
a better result than solely considering the most certain path than it is able to exploit the remaining
information even when assuming fully correlated estimates.

4.5 Conclusion

Covariance intersection allows to extract absolute node poses in the above sense from a relative map.
During simultaneous localization and mapping, one always gets a conservative pose estimate with
respect to the starting point of the exploration. It is important to note that these poses are appropriate
for exploring and mapping a new environment but they do not represent the final absolute map. Nev-
ertheless, the node poses are accurate enough for closing loops, they provide a representation of the
pose uncertainty and they converge very fast towards the minimum variance pose in case of closing a
loop. Since the mapping is done by means of a relative map, one can afterwards apply the equation
solver to get the minimum mean square error solution for the absolute node poses.

Although the computation scheme is independent of how the relative map is built, the utility of
the pose estimates severely depends on the covariance values. Due to the conservative approach, the
covariance increases considerably fast. However, the applied scheme to extend the network based on
scan matching allows to cover large distances without adding high uncertainty.

It is important to note that the covariance intersection can be applied only since a relative map is
used. Applying covariance intersection to an absolute map would throw away the relations between
absolute poses.



Chapter 5

The SMARTSOFT Framework

5.1 Introduction

Increasing competence of mobile robots comes along with increasing complexity of such systems.
Complexity shows up at different levels of robotic systems and is mainly caused by the great number
of involved components. Mastering the complexity of integration is a substantial premise towards an
operational system.

Nowadays, hardware like mobile platforms, sensors and computing devices are readily available.
They are also standardized at least with regard to their interfaces. Therefore, the availability of fully
equipped and robust hardware platforms is not an issue anymore. This is mainly achieved by reusing
approved components based on widely accepted standards as they are available in mechanical engi-
neering, for example.

However, vital functionalities of mobile robots are provided by software and software dominance
is still growing. Complex tasks can only be executed by a harmonic interaction of a diverse set of
skills. Not only that single software components are of demanding complexity, but they also show
elaborate interactions. Successfully mastering such complexity is an issue of the overall system ar-
chitecture and is inevitably related to software engineering. Thus, both is required, a supporting
framework to guide the actual implementation of robotic software components according to certain
standards and an adequate concept behind that framework to ensure that the framework enforced stan-
dards are suited to master the complexity challenge.

In many respects, implementing the software of mobile robots is still a ”black art”. This is in
particular worse regarding the high demands on such systems. Without an appropriate conceptual
design for implementation, in the best case, one ends up with components which are not reusable on
other platforms. The worst case is a complex software system which is difficult to test and maintain
and is at some point even not changeable anymore without high risk.

As already successfully demonstrated in many disciplines, complexity can be mastered by compo-
nent based approaches. These split a complex system into several independent units with well-formed
interfaces. Complexity is reduced by restricting the focus on a single component when going into
details. Fitting of components is ensured by standards for their external appearance and behavior.

The same holds true for complex software systems. In the software domain, component based
approaches can reduce complexity by decoupling implementations of services from interfaces to ac-
cess them. Making component dependencies explicit by well-formed interfaces supports reuse of
components and simplifies assembling new systems.

It is, however, not obvious how a component based software approach for sensorimotor systems
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can look like and what kind of support a corresponding software framework should provide to guide
and to enforce the implementation of components according to the chosen component architecture.

The major questions are what kind of standards components should obey in order to work in
integrated systems, and how to design a framework such that it provides both maximum flexibility
for building sensorimotor systems and guidance for a working and manageable software system. The
answer is a software framework tailored to the needs of sensorimotor systems. The framework has to
assist in structuring and implementing software for sensorimotor systems without restricting the robot
architecture.

The presented approach for robotic software supports the implementation of interacting software
components. The major contribution is a small but sufficient set of carefully chosen communication
patterns for component interaction. By mapping all component interactions onto predefined patterns,
all interfaces follow the predefined semantics of the communication patterns. Thus, all interfaces
behave in a predefined manner. This puts the focus on services which prevent components from
exposing their entire application logic and eliminates implicit component interdependencies. Another
feature that goes beyond standard component approaches is the dynamic wiring pattern. This pattern
is the basis for making both the control flow and the data flow, configurable at runtime from outside
a component. It is, for example, required by the implementation of mechanisms for situated skill
compositions which occur in nearly all robotic architectures.

5.2 The Problem

For a long time, the robotics community believed that integration only requires minor efforts once
the needed algorithms are all available. The difficulties have been by far underestimated. Building a
flexible and general robotic software system is not only a demanding but also an indispensable task
towards an operational robot.

Robotics software systems are complex distributed applications. Even though computing hard-
ware and networks get smaller and faster and can now even be integrated easily into sensorimotor
systems, distributed software gets larger and more difficult to maintain and to develop. The chal-
lenges of building distributed software systems stem from both inherent and accidential complexities
[15]. Inherent complexity is directly related to communication and synchronization issues. Acciden-
tial complexity stems from using unsuited tools resulting in non-extensible and non-reusable designs
and implementations. One of the largest sources of complexity in general is coupling, resulting in non-
scalability and non-distributability. Coupling means that one component is making use of knowledge
about internals of other components.

Component based software development generally provides means to master the complexity issue.
Often used notions of components, however, are only vague and are mainly abstracted from technical
details but technical details cannot be ignored in the domain of sensorimotor systems. The require-
ments in terms of modularity, configurability, communication and control are critical and have to be
considered altogether. Most important, existing component approaches do not provide assistance in
defining the semantics of the component interfaces. However, the interface semantics is a crucial point
with respect to mastering the complexity issue. This explains the need for a framework with domain
specific patterns tailored to the needs of sensorimotor systems.

Another challenge of sensorimotor systems is to support the development of a system by providing
a software architecture without resorting to a particular robot architecture. Components of even the
same robot system often follow completely different paradigms and still have to fit together. The dif-
ficult balance of support and restriction has to be mastered in an application area where sophisticated
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software techniques are essential due to manifold and concurrent activities.
The goal is to build a software framework for the component based implementation of sensorimo-

tor systems. Its purpose is to provide modular concepts and structures to cope with the complexity
of robotic software systems. It has to provide patterns for often needed structures such that imple-
mented components fit together. Critical issues are for example communication and synchronization
mechanisms. The goal is neither a software engineering methodology for sensorimotor systems nor a
framework which dominates every single detail at the implementational level.

5.2.1 Requirements

According to the OROCOS project [20] [119], several roles of users are distinguished that all put a
different focus on complexity management.

End users operate applications based on the provided user interface. They focus on the functionality
and use a readily provided system. They do not care on how the application has been built and
mainly expect reliable operation.

Application builders assemble applications based on suitable and reusable components. They cus-
tomize them by adjusting parameters and sometimes even fill in application dependent parts
called hot spots. They expect the framework to ensure clearly structured and consistent compo-
nent interfaces for easy assembling of approved off-the-shelf components.

Component builders focus on the specification and implementation of a single component. They
expect the framework to provide the infrastructure which supports their implementation effort
in such a way that it is compatible with other components without being restricted too much with
regard to component internals. They want to focus on algorithms and component functionality
without bothering with integration issues.

Framework builders design and implement the framework such that it matches the manifold re-
quirements at its best and that the above types of users can focus on their role.

An appropriate approach has to provide consistent solutions for all of the above abstraction lev-
els. A component based software approach per se already tackles many of the above demands. The
following is a compact and widely accepted definition of a software component:

Software Component ”A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be developed
independently and is subject to composition by third parties”. [112]

Note that there is an important difference between objects in object-oriented approaches and soft-
ware components. The main difference is the coarser granularity of components. The definition of
objects is purely technical and does not include notions of independence or late composition. Al-
though these can be added to objects, components explicitly consider reusable pieces of software that
have well specified public interfaces, can be used in unpredictable combinations and are stand alone
entities. Figure 5.1 shows one of the advantages of using a component based approach in robotics.

The acceptance of a framework inevitably depends on how well it supports the various users
and on how well it addresses the specific needs of the application domain. We therefore consider
some requirements of the addressed robotics domain, which are not all per se covered by standard
component based approaches.
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Figure 5.1: Easy replacement of components like the servers of the real robot by a simulation system
within a component based approach.
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Figure 5.2: Dynamic wiring supports task dependent composition of skills to behaviors.

Dynamic wiring can be considered as the pattern of robotics. Dynamic wiring allows changes to
connections between components to be made at runtime. It is the basis for making both the
control flow and the data flow, configurable from outside a component which is for example
needed for situated and task dependent compositions of skills to behaviors as shown in figure
5.2. Components are reused in different settings and fulfill different tasks depending on their
interconnections. Since dynamic wiring is needed in nearly all robotic architectures, it has to
be provided as core pattern by a robotic framework. Reconfigurable components are modular
components with the highest degree of modularity. Most important, they are designed to have
replacement independence. Many component approaches only provide a deployment tool to
establish component connections before the application is started.

Component interfaces have to be defined at a reasonable level of granularity. The main aspect of
proper component interfaces is to restrict spheres of influence such that no unwanted depen-
dencies are propagated across component boundaries. As shown in figure 5.3, too fine-grained
component interfaces can result in unmanageable software systems with closely coupled com-
ponents. The figure on the left shows spaghetti-like dependencies with insight into a component
whereas the figure on the right side shows puzzle-like replacement of components where inter-
nals are fully decoupled from the externally visible interfaces. A reasonable level of component
interfaces, for example, avoids fine-grained intercomponent interactions and supports loosely
coupled components.
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Figure 5.3: Component interweaving with fine-grained component interfaces versus the proposed
more abstract service based interfaces. Replacing a component in the service based approach requires
matching of the component interfaces at the level of the proposed communication patterns instead of
matching individual object member functions with arbitrary user defined semantics.

Asynchronicity Patterns of a robotic framework should make use of asynchronicity wherever pos-
sible and should simplify usage of asynchronous interactions by the framework user as far
as possible. Asynchronous interactions have to be applicable as simple as synchronous ones.
Asynchronicity reduces latencies and cycle times by exploiting concurrency and it can avoid
passing on tight timing dependencies between components. Steps otherwise executed sequen-
tially can be interleaved or even executed in parallel avoiding unnecessary idle times when
waiting for responses.

Component internal structures Components at different levels of the robot architecture can fol-
low completely different designs. Sensor data processing components, for example, often loop
through the same steps each time new sensor values arrive. An object recognition compo-
nent may want to run time-consuming parameter adjustments in parallel to a recognition task.
Component builders therefore ask for as few restrictions as possible with regard to component
internal structures.

Transparency A framework has to provide a certain level of transparency by hiding details to reduce
complexity. However, the level of transparency has to be adjusted to the robotics domain. Fully
hiding all distribution aspects is undesired because that often not only results in a decrease in
performance but also prevents predictability of the time needed for communication and of the
use of system resources.

Easy usage Acceptance of a framework for sensorimotor systems is increased when it offers obvi-
ous additional value while avoiding steep learning curves. Providing access to state-of-the-art
software technology without requiring every component builder to be a software engineering
expert allows robotics experts to focus on algorithms and relieves them from the burden of
software integration. Challenging topics which have to be addressed are, for example, location
transparency of components and their services and concepts of concurrency including synchro-
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nization and thread safety. A framework provides additional value only if its usage is much
simpler than meeting all the requirements without using a framework.

Although many activities in robotics are time-critical, not in all robotics applications hard real-
time computing is a central concern. Very often, it is sufficient to have a timely responding system
which monitors critical activities by watchdogs or uses anytime algorithms. The focus of interest here
is on service robotic systems composed of many different components showing diverse and elaborate
behaviors. Thus, it is much more important to have a strict component architecture which decou-
ples component internals from interfaces and thereby, for example, minimizes unreproducible timing
dependencies. Well-structured component interfaces based on standardized patterns with approved
internal mechanisms increase predictability of the behavior of a component which definitely supports
component and application builders. Components using a hard real-time framework to implement
closed loop control can nevertheless be wrapped and made accessible within the proposed approach.
The approach could also be extended and implemented in such a way that it explicitly matches differ-
ent realtime levels but this goes beyond the scope of this thesis.

At the organizational level both component and application builders, expect means to consistently
specify component services and interfaces. In particular in robotics, many equivalent solutions for
subsuming functionalities to components exist and therefore clear agreements on component services
and on their use are essential. Means to reach early agreement on component responsibilities and
interface semantics guided by use cases simplify the detection of missing services, uncover unassigned
responsibilities and support finetuning of component interactions before implementation. Afterwards,
interface descriptions simplify elimination of malfunctions in the overall software system by first
performing compliance checks at the component level before going into details. This is particularly
useful in robotics where testing of the full functionality of a system is often very time consuming and
difficult due to lack of reproducible experiments and settings.

Sensorimotor systems require components to be distributable over several networked computers.
The first reason is the overall computing power needed to process all the concurrent activities. The
second reason is the required low latency when one has to react to new sensor input. Therefore, com-
ponents have to be transparent with respect to access and location. This covers hiding differences
in data representation and hiding where a resource is located even across platforms. It is, however,
important to always be able to clearly identify which service comes across which intermediary net-
work components to properly rate delays. Therefore, migration transparency with respect to accessing
other components or with respect to providing services is desired at the level of component builders.
An application builder, however, normally has to finetune the distribution of components across the
available resources and therefore relocation transparency is not wanted in robotics applications since
this severely affects predictability.

A component often comprises several complex services to avoid extensive data exchange between
components. Concurrent activities within a component with separate control flows are therefore a
natural structure in robotics. In order to simplify the implementation of multithreaded components,
a framework should provide approved patterns to cope with common pitfalls. These include con-
currency transparency, which eliminates the need for further synchronization within components for
concurrent access to shared resources. Furthermore, different components are often linked to form a
control loop and need to exchange high volumes of data. Efficient component interactions are there-
fore crucial and a centralized communication approach like a blackboard could very soon become a
bottleneck as well as fine grained communication where the bottleneck results from frequent access
to attributes of remote objects.
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However, one also has to recognize that a component based approach for sensorimotor systems
and a supporting framework need not provide all of the functionalities of a general purpose frame-
work. The domain dependent focus does not necessarily limit its applicability to robotics but of course
weights requirements in a specific manner. In robotics, for example, one normally does not have a
repertoire of components providing similar or equivalent services. In the majority of cases, mecha-
nisms for automatic load balancing of services are as little required as world wide scalability. On the
other hand, it is, for example, important to be able to control the number of concurrently spawn and
active threads to properly master the bounded resources on board a sensorimotor system.

5.3 Related Work

Of course, there are examples of succesfully deployed complex robotic systems like museum tour
guides [147]. These systems show impressive robustness and contain state-of-the-art algorithms.
However, their overall software has often evolved over years and, unfortunately, provides no means to
make implicitly coded experiences available as guideline for new system designs.

Frameworks for building sensorimotor systems are so far mainly provided by the robot manufac-
turers and are in most cases vendor specific. Those frameworks are primarily developed for simple
access to hardware components and do not take into account requirements resulting from more com-
plex robotic architectures. Mobility [74], for example, is an up-to-date and CORBA [26] based package
provided with the platforms of ISI [75]. A robot system is represented by a set of hierarchically orga-
nized objects. Although that framework already offers much more than those provided by many other
vendors, it still only provides an object centered view and therefore is mainly useful for simple access
to the robot’s hardware and for assembling of few skills.

MIRO [152] is another CORBA based middleware designed to ease the implementation of au-
tonomous mobile robots. It is vendor-independent and its core adheres to modern design principles
and software standards. Again, it is a purely object oriented approach without providing guidance
with respect to specifying interfaces.

Other systems like ARIA [2] are object oriented application programming interfaces. These do
not provide any suitable support for structuring more complex systems consisting of many different
components. Saphira [95] runs on top of ARIA and is an architecture for mobile robot control. Every
activity must partition its work into small and incremental routines that fit into the cycle time of the
system. Finite state machines with a fixed cycle time which are triggered synchronously then control
the execution order. This approach is suited only for some control algorithms and does not at all
scale to more complex systems. Furthermore, Saphira implements a specific robot architecture with
the so-called local perceptual space at its center. That is designed to accommodate various levels of
interpretation of sensor information [96]. Therefore, it is the implementation of a specific architecture
and not a more generally usable framework.

Many other robotic software systems are also implementations of specific architectures and force
users to stick to the chosen approach. Others are libraries to provide specific functionalities and
do not care about integration. GenoM [46, 108], for example, is a complete framework addressing
various levels of robot architectures but expects users to adapt to the strict and predefined internal
structure of components. GenoM focuses on the component internal architecture which is independent
of the used communication mechanism. However, its requirements on a component communication
mechanism are fully matched by the approach presented in this chapter. GenoM is based on codels
which are uninterruptable code elements. Again, every activity is expected to be split into smaller
code segments according to states of a finite state automaton. Therefore, long running calculations
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have to be distributed over several states to be interruptable. Of course, this makes tool support and
coherence easier but also limits the component builder in choosing its favored architecture inside a
component.

An aspect often neglected by available or proposed frameworks is that a sensorimotor system is
composed of many and heterogeneous algorithms. Decisional processes are completely different from
control loops. Components have to be coordinated and configured to generate the desired behavior and
therefore have to be controllable. General purpose component architectures can of course significantly
simplify the implementation of a framework for sensorimotor systems and can provide the underlying
infrastructure.

Despite the wide use of component based approaches in software engineering, there is still no gen-
erally agreed notion of component available. Various aspects of component based architectures are
considered in [122]. Others define software components as ”binary units of independent production,
acquisition and deployment that interact to form a functioning system” [146]. Various definitions can
also be found in [19]. Definitions of components are often too abstract and mainly address organi-
zational issues. Abstract concepts of a component are therefore implemented in many different ways
resulting in different and rivaling component architectures.

The component model of Java [76] enables developers to write reusable components once and
run them anywhere. One can benefit from the platform-independent power of Java. Java Beans
[77] act as a bridge between component models and provide seamless means for developers to build
components that even run in ActiveX [1] container applications. Jini [79] uses events as wiring points
which can even be used across virtual machines. These approaches are, however, all related to the
Java technology which is not the first choice for all components in the robotic domain.

The Simple Object Access Protocol (SOAP) [144] is an open standard to communicate over differ-
ent component models and is based on XML [154] and HTTP [72]. It has been mainly developed to
ensure interoperability at the expenses of performance and is therefore not suited as general approach
across all levels of sensorimotor systems.

However, neither the component model of Java nor the one of SOAP assists the component builder
in defining the appropriate interface level of a component. They provide means to access and run
components, but leave it to the component builder to define suitable interface objects with appropriate
methods. Nevertheless, exposing arbitrary objects with arbitrary methods makes it difficult to the
application builder to compose complex applications. For example, component interfaces can differ
with respect to the concurrency level they support and it is up to the application builder to figure out
how to safely access and use another component.

CORBA [26] is a vendor-independent standard for distributed objects. It provides mechanisms
by which objects transparently make requests and receive responses as defined by the object request
broker. It is an application framework that provides interoperability between objects built in possibly
different languages and running on possibly different machines in heterogeneous distributed envi-
ronments. In general, object centered middleware systems alone are not sufficient. These primarily
address transparency aspects and often do not have a component concept. They nearly never provide
means to ensure standard interfaces with predefined semantics.

The CORBA specification is being extended continuously and the number of supported features is
growing rapidly. The major CORBA releases are illustrated in figure 5.4. Initially, CORBA solely sup-
ported synchronous function invocations with the main focus on object location transparency. Even
interoperability between different object request broker implementations was not given. Access to
remote objects on a per-attribute basis resulted in fine-grained communication and led to huge net-
work traffic which is a severe threat to performance and scalability. This is not only a problem in
robotics, but has also attained attraction in the domain of enterprise applications [68]. Object-by-
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Figure 5.5: The CCM provides standard component interfaces for late composition. Components are
however still interweaved at the fine-grained level of user defined member functions with arbitrary
semantics.

value semantics has not been introduced until CORBA 2.3 and asynchronous messaging has finally
been incorporated into CORBA 2.4 [27]. Even today, many CORBA implementations still have prob-
lems with the tricky details of the valuetype semantics or do not cover the complete asynchronous
messaging interface. A good overview can be found in [123]. The latest substantial extensions led to
the umbrella term CORBA 3 with the specifications released in september 2002 [29]. Now, CORBA
also comprises an advanced and elaborate component model called CCM [30] illustrated in figure
5.5. A key role is played by the CIDL (Component Implementation Definition Language) to describe
component interfaces which are processed by a compiler. Object containers provide mechanisms
for late composition. The component connections shown in figure 5.6 are established with package
deployment.

The CCM is, however, still centered around the concept of remote objects. Late composition of
components is achieved by an additional abstraction layer which allows to configure the connection
between the local object proxy and its remote implementation at component deployment. The main
disadvantage of an object centered view is that arbitrary member functions of user defined objects are
exposed as component interface which interweaves components at the fine-grained level of arbitrary
user member functions at interface objects. Full implementations of CORBA 3 are expected within
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Figure 5.6: Assembling of components with the CCM at application deployment based on offered and
required interfaces.

the year 2003.
CORBA is a general-purpose and powerful approach. In the beginning, lack of features made

CORBA unsuitable for robotics applications. The problem now is that the countless options and ser-
vices show a remarkable complexity. This requires a skilled and experienced software developer to
properly select and apply that part of CORBA which best fits the requirements of the application do-
main. A good example of critical issues related to the robotics domain are the object activation mod-
els. A separate thread per request can easily result in unpredictable resource consumption. CORBA is
therefore suited as tool for framework builders but its application requires far too much software engi-
neering expertise from other user groups of a robotic framework. Interestingly, features important for
robotics applications like asynchronicity, which are standard in message oriented middleware, made
their way into CORBA very late. The same holds true for the object by value semantics, which al-
lows coarse grained communication producing traffic only once when the whole object is transmitted
instead of producing fine grained interactions each time an attribute is accessed. This is in particular
important in robotics, where objects can hold large data structures which are processed in complex
algorithms requiring frequent object access. Furthermore, an object by value semantics significantly
simplifies object responsibilities and is therefore the better approach in many distributed applications
compared to using references.

As already mentioned, CORBA implementations differ with respect to both the subset of features
they are compliant with and their major focus. TAO [133] is an advanced open source CORBA imple-
mentation which is both standard conformant and widely supported. Its goal is to provide an efficient
high performance and scalable real-time implementation with predictable timing characteristics. Its
implementation is based on the Adaptive Communication Environment (ACE) [132]. ACE is a frame-
work for programming networked applications. It provides patterns to master the inherent complexity
of concurrent networked applications [136, 137]. This very powerful framework provides operating
system abstractions and is therefore a very good starting point for implementing an operating system
independent robotics framework. Its patterns are, however, intended for framework builders.

Of course, middleware systems like CORBA provide a suitable base for implementing a software
framework for robotics but they cannot guarantee a consistent robotic software system solely based
on the fact that CORBA and its component model are being used. This would completely ignore the
additionally required domain specific knowledge. The experience with various kinds of component
structures, interface characteristics and suitable interaction patterns is a key part, too. One of the
most important aspects of a framework and of patterns is to provide just that meta knowledge in a
reusable form. Even with CORBA, dynamic wiring is not provided as self-contained service or readily
applicable pattern.

The OROCOS project [20] was started to provide a software framework to be able to share, dis-
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tribute and reuse robotic software components among laboratories or companies. The open source
project wants to tackle the lack of a generic programming framework in the context of robotic sys-
tems. The approach presented in this chapter was first presented in [131] and is now incorporated into
the OROCOS project [127].

5.4 The Approach

Complexity reduction of component based approaches results first and foremost from splitting com-
plex systems into smaller and independent entities with well-formed interfaces. This allows the differ-
ent user groups to focus on one aspect or detail at a time and to rely on the framework that afterwards
still everything fits together. Complexity reduction of component based approaches is based on the
general and powerful concept of decoupling. The different requirements on a software component
approach for robotic systems are all in some aspect related to decoupling and therefore the proposed
approach is explicitly oriented at the design goal of decoupling to master the complexity issue.

From the view of the component builder, decoupling for example comprises the separation of
structure and functionality to ensure that a service can be implemented without caring about which
and how other components will use it. Decoupling means fully hiding the component internal structure
from other components. Decoupling at the level of components does not require to consider internals
of other components while focusing on the details of one component. Inside a component, decoupling
means that no extra care has to be taken when services are called concurrently from different threads.
Decoupling of activities comprises exploiting asynchronicity as much as possible and hidden from the
framework user.

Component B

Client (C, Service 1)

Client (A, Service 1)

Component C

Server (B, Service 1)

Server (B, Service 2)

Client (B, Service 1)

Client (B, Service 2)

Server (A, Service 1)

Client (B, Service 1)

Server (C, Service 1)

Component A

Figure 5.7: Overview on the approach. The component interfaces are composed of only a few different
standard patterns.

Implementing a component approach based on the concept of decoupling requires to identify a
suitable starting-point. Implementing the various aspects of decoupling requires to master the com-
ponent interactions. Thus, the developed approach selects the intercomponent communication as a
suitable starting-point for an appropriate implementation of a component based software framework
for sensorimotor systems. The basic idea is to provide communication patterns as the only compo-
nent interfaces to control all component interactions as shown in figure 5.7. The unique feature of the
approach is to compose any component interface out of a set of predefined communication patterns.
If the communication patterns are chosen carefully, one can cover all communicational needs with a
very small set of patterns. These can be specified in such a way that they provide a clear semantics
and that they fulfill all aspects of decoupling relevant in the robotics domain. Mapping all component
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interactions onto predefined and strictly specified patterns is the key approach to match the various
aspects of decoupling in a component based approach for sensorimotor systems.

5.4.1 The Underlying Concept

Communication patterns squeeze every component interaction into predefined patterns. A commu-
nication pattern defines the communication mode and provides a fixed set of access functions. Two
examples of a communication mode are a one-way interaction and a push-service. Access functions of
a communication pattern implement approved patterns like a deferred reception of answers or an asyn-
chronous processing of requests. Communication patterns implicitly code the knowledge about out of
what kind of structures one should compose component interfaces and they provide that knowledge
in an easy to use way.

Components are technically implemented as processes. A component can contain several threads
and interacts with other components via predefined communication patterns. A component can
provide and use any number of services. Services of components can be wired dynamically at
runtime.

Communication Patterns assist the component builder and the application builder in building and
using distributed components in such a way that the semantics of the interface is predefined
by the patterns, irrespective of where they are applied. A communication pattern defines the
communication mode like one-way, request/response or push and provides predefined access
modes like synchronous and asynchronous service invocations or handler based request han-
dlings. This allows issues of concurrency and asynchronicity to be handled inside the patterns
and fully hidden from the user. Communication patterns always consist of two complementary
parts, a service requestor and a service provider, representing a client/server, a master/slave or
a publisher/subscriber relationship.

Communication Objects parameterize and bind the communication pattern templates. They repre-
sent the content to be transmitted via a communication pattern. They are always transmitted
by value to avoid fine grained intercomponent interactions when accessing an attribute. Fur-
thermore, object responsibilities are much simpler with locally maintained objects than with
remote objects. Communication objects are ordinary objects decorated with additional member
functions for use by the framework.

Service Each instantiation of a communication pattern provides a service. A service comprises the
communication mode as defined by the communication pattern and the transmittable content as
defined by the communication objects.

The service based view comes along with a specific granularity of a component based approach.
Services are not as fine grained as arbitrary component interfaces since they are self-contained and
meaningful entities and not only dependencies spanning across components. Major characteristics of
the proposed service based component approach are as follows (also illustrated in figure 5.8):

� A fixed set of communication patterns which provides predefined component interaction modes
is used to compose any component interface. Communication patterns provide the only link of
a component to the external world and can therefore ensure decoupling at various levels. Com-
munication patterns decouple structures used inside a component from the external behavior of
a component. Decoupling starts with the specific level of granularity of component interfaces
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Figure 5.8: Summary of the major characteristics. All components only interact via services based on
predefined communication patterns. These not only decouple components but also handle concurrent
access inside a component. Each component can provide and use any number of services.

enforced by the communication patterns which avoids too fine-grained interactions and ends
with the message oriented mechanisms used inside the patterns between components.

� Using communication patterns with given access modes prevents the user from puzzling over
the semantics and behavior of both component interfaces and usage of services. One can neither
expose arbitrary member functions as component interface nor can one dilute the precise inter-
face semantics and the interface behavior. Given member functions provide predefined user
access modes and hide concurrency and synchronization issues from the user and can exploit
asynchronicity without teasing the user with such details.

� Arbitrary communication objects provide diversity and ensure genericity with a very small set
of communication patterns. Individual member functions are moved from the externally visible
interface to communication objects.

� Dynamic wiring of intercomponent connections at runtime supports context and task dependent
assembly of components.

Since component interactions are mapped onto predefined communication patterns, all component
interfaces are composed of the same set of patterns. Therefore, looking at the external interface of a
component immediately opens up the provided and required services, and looking at the communica-
tion pattern underlying a service immediately opens up the usage and semantics of this service.

Figure 5.9 illustrates the standard remote object approach. The application builder can expose
arbitrary member functions resulting in bulky interfaces with a user-defined semantics. The local stub
and the remote object are tightly coupled. In CORBA, for example, it is within the responsibility of
each client whether to access a server synchronously or asynchronously. The server needs not to be
changed but it is then left to the component builder to properly synchronize incoming responses at the
client side with the activity which initiated the request.
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Figure 5.10: The proposed service based approach exposes services as component interface. Services
are based on only a few different patterns which already comprise access modes.

In contrast, the proposed approach moves individual member functions from the externally visible
component interface to the communication objects. As illustrated in figure 5.10, services are only
accessed via predefined member functions with a precisely defined semantics. The major advantage
is that now asynchronicity issues and access modes are no longer part of every single object but belong
to the communication patterns. Synchronization and concurrency issues can now be handled inside
the patterns based on approved procedures instead of dealing with them again and again in every
single remote object.

Providing access modes and not leaving it to the user to decide on the member functions to be
exposed as interfaces is a significant part of the approach. This avoids puzzling over the semantics
of otherwise arbitrary user defined member functions of remote objects and relieves the component
builder from implementing error prone individual solutions for concurrent pattern and component ac-
cess. This results in reduced component complexity and increased stability. Communication patterns
significantly simplify the interface semantics problem.
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Figure 5.11: Decoupling of components. The example shows a query service.

Specifying every communication pattern as two complementary parts in combination with prede-
fined access functions decouples both the communicating components and the access modes at both
communication endpoints. As shown in figure 5.11, the interaction between the service provider and
the service requestor is completely hidden from the user and decoupled from the user access modes.
Since no intercomponent interaction can circumvent the communication patterns, the framework can
ensure the required level of decoupling.

Both parts of a communication pattern are completely independent and decoupled stand alone
entities. One part is not just a proxy to hand over member function calls to the other side. Mem-
ber functions at both parts of a communication pattern are not required to be identical. Therefore,
access modes can be completely different at both parts of a communication pattern and are assigned
to communication patterns solely based on use cases. Asynchronous interactions are also handled
inside the patterns. This includes the assignment of deferred answers to the corresponding requests
in a way that is transparent to the user. Appropriate member functions of access modes simplify the
usage of asynchronous interactions significantly by providing comfortable means to test or to wait for
deferred answers. Decoupling access modes of the service requestor from the ones used by the ser-
vice provider does not impose constraints across component boundaries. Components can implement
individual processing models without being restricted to the ones used by their counterpart. This is
among others an important building block for reducing complexity since components can use their
individual component architectures without being affected by other components.

Dynamic wiring also requires both parts of the communication patterns to be stand alone entities
with appropriate state machines. For example, the service provider has to be able to discard answers
for meanwhile disconnected service requestors. The service requestor has to correctly cancel pending
requests when getting disconnected from the service provider while keeping already received answers
for deferred pickup.

Genericity of the approach is achieved by using arbitrary and individual communication objects.
They are always transferred by value and are therefore always maintained locally. Accessing locally
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available communication objects avoids fine-grained intercomponent interactions and results in in-
creased efficiency. The implementations of the member functions of the communication objects are
neither affected by aspects of the intercomponent communication nor can these implementations in-
troduce any intercomponent dependencies. In accordance with the service based view, communication
objects can be accessed and manipulated without entailing external component interactions. They can
also be used independently of the subsequent state of the service providing component once they have
been obtained. Furthermore, object responsibilities and synchronization issues are much simpler with
locally maintained objects than with remote objects. Arbitrary member functions defined by the user
can be implemented without taking into account any aspects of intercomponent dependencies since
their execution context never spans across components.

The proposed approach interweaves components at the level of services as against to interweaving
components at the fine-grained level of member functions. Since all services are based on only a very
small set of patterns, one can strictly control intercomponent dependencies and can therefore ensure
proper component interfaces.

5.4.2 The Communication Modes

Restricting all component interactions to given communication patterns requires a set of patterns that
is sufficient to cover all communicational needs. One of course also wants to find the smallest such set
for maximum clarity of the component interfaces and to avoid unnecessary implementational efforts
for the communication patterns. On the other hand, one has to find a reasonable trade-off between
minimality and usability. The goal is to keep the number of communication patterns as small as
possible without ignoring easy usage.

In principle, every kind of component communication can be realized once one-way links between
components are established. This, however, is not very convenient since more complex communica-
tion modes then have to be composed manually. The component builder would then be responsible
for handling concurrent requests and for coordinating incoming and outgoing messages. The basic
purpose of the communication patterns is to relieve the component builder from these error-prone
details by providing approved and reusable solutions. Therefore, communication patterns have to pro-
vide patterns for higher level component interactions. The communication patterns itself are of course
completely independent of the internally used mechanism to transmit data between the communica-
tion endpoints of a pattern. They can be implemented on top of standard middleware systems as well
as on top of simple message based systems.

Pattern Relationship Initiative Service Communication
Provider Mode

send client/server client server one-way communication
query client/server client server two-way request/response communication
push newest publisher/subscriber server server 1-to-n distribution
push timed publisher/subscriber server server 1-to-n distribution
event client/server server server asynchronous notification

wiring master/slave master slave dynamic component wiring

Table 5.1: The set of communication patterns.

Analyzing the various kinds of interactions between components allows to identify a small number
of interaction patterns that are listed as communication patterns in table 5.1. Since communication
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patterns wrap services, the two parts of a pattern are called service provider and service requestor.
Even though the push patterns form a publisher/subscriber relationship, we call the publisher the
server and the subscriber the client. In case of a client/server relationship and for the push service,
the service provider is the server part of the pattern. In a master/slave relationship, the service is
provided by the slave since the slave executes the commands of the master. In all other cases, the
service provider is the server. Generally, a service provider can handle an arbitrary number of service
requestors at the same time.
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A client initiated communication can be either a one-way or a two-way communication and is
covered by the send and the query pattern. The send pattern is shown in figure 5.12 and transmits only
one communication object from a client to the server. It is for example used to control the velocity
or the steering angle of a mobile platform. It can also be used to implement a data driven processing
chain of components. Figure 5.13 illustrates the query pattern. A client sends a request containing
individual parameters and receives an individual result from the server. The query pattern is also
used if a service is needed at a very low rate compared to the cycle time of the service. To save
communication bandwidth, it makes more sense to perform a query if new data is needed instead of
being overrun by not needed updates. The query pattern is for example used to request a particular
part of a map where the request specifies the size and the origin of the map patch returned by the
answer communication object. The send and the query pattern cover all client initiated component
interactions.

The push pattern provides a publish/subscribe mechanism for data distribution. As shown in figure
5.14, every client gets the same data simultaneously as soon as new data is available at the server
without polling. Compared to the previous patterns, the communication is initiated by the server and
not by the client. A push service is superior to polling in case several clients need the same data or in
case the update rate is dictated by the server. The push pattern is for example used to distribute laser
range scans to various components and to provide an updated local map patch as soon as something
has changed. According to use cases in robotics, the push pattern is split into a push newest and a push
timed pattern. The push newest server has to be fed with new data by the user and then distributes
the data to all subscribed clients. The push timed server is triggered periodically by the framework to
acquire new data and distributes the data on a regular basis with individual client update intervals. It
relieves the component builder from handling timing schemes.

The event pattern supports asynchronous notifications. An event activation provides a parameter
set for the event condition. The event condition is checked at the server side. An event activation
fires as soon as the event condition becomes true under its individual activation parameters. The
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returned communication object can contain any required information about what caused the event to
fire. As with the push pattern, the server is the active part and the server decides on when to check
the event condition. The event pattern, however, does not distribute the same data to every subscribed
client, but provides individual answers for each firing activation. Events are mainly used for vertical
communication between components where they synchronize task execution progress with a discrete
description of steps in a monitoring component. Events are also used to, for example, monitor the
battery voltage and report when the voltage drops below critical thresholds.
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Figure 5.16: The wiring pattern. One master can control any number of slaves in parallel.

The wiring pattern shown in figure 5.16 provides a consistent mechanism for dynamic wiring of
client objects from outside a component. The service requesting part of a communication pattern can
expose itself as a port by registering itself at the component’s wiring slave object. The port can then
be connected to an appropriate service provider from outside the component via the master part of the
wiring pattern. A service requestor can connect to any service provider as long as both are compatible
in terms of the service. Compatibility of a service requires that both parts belong to the same type of
communication pattern and that both are parameterized by the same types of communication objects.
Wiring at runtime covers every kind of changes in connections between client and server parts of
services at any time and requires the communication patterns to appropriately cope with connection
changes even when there are pending communication activities. Dynamic wiring is, for example,
needed to change the data flow between components to compose different behaviors out of a set of
skills.
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The proposed set of patterns is sufficient to cover all communicational needs since even with a
one-way communication as provided by the send pattern, one can emulate any other communication
mode. With respect to usability, one should, however, provide at least further common communication
patterns. The proposed set of patterns covers two-way communication by the query pattern,

� 	 �
distribution by the push patterns and conditional signaling by the event pattern. An additional pattern
that is in particular tailored to the needs of robotic systems is the wiring pattern. Considering both
variants of the push pattern, this results in only six different communication patterns for composing
any component interface.

5.4.3 The Communication Objects

Communication objects parameterize the communication patterns and are transmitted by value. This
appears as moving a copy of an object between components. The framework transmits objects by only
transmitting the relevant content of a communication object. At the recipient, that content is used to
reconstruct a local instance of the appropriate communication object type. The whole procedure is
transparent to the user and works like a copy constructor or assignment operator across component
boundaries.
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...arbitrary user member functions
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Figure 5.17: The basic structure of a communication object with the framework interface.

Communication objects are regular objects which are decorated by additional member functions
for use by the framework. Figure 5.17 shows the basic structure of a communication object. A
get-method extracts the relevant data structures and converts them into a platform independent repre-
sentation for transmission. A set-method converts the platform independent representation back into
the original object internal representation. Finally, every communication object type can be identified
by a unique name provided by the name-method.

Figure 5.18 illustrates how a communication object migrates between components. The example
communication pattern is parameterized by one communication object of type C. The user task is
operating on instance A of the communication object of type C. Calling a member function of the
user interface of the service requestor instance R passes the communication object instance A to the
communication pattern ➀. Now, the communication pattern R internally extracts the platform inde-
pendent representation of the content of A and passes the platform independent representation to the
communication mechanism ➁. The communication mechanism of the service providing component
receives the platform independent representation and forwards it to the appropriate service providing
communication pattern which in our case is the instance P ➂. The service provider fills in a local
instance B of the appropriate communication object type C which can then be further processed ➃.
The instance B is completely local and accessing it does not initiate any further communication. Of
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Figure 5.18: Transmitting a communication object by value.

course, setting internal data structures to the received content also requires the set member function to
properly initialize the not transmitted parameters.

This approach for transmitting objects by value is completely independent of the communication
mechanism used and can be implemented on top of any middleware system. Its major advantage is
that the user accessible member functions can use arbitrary types for arguments and return values. Not
being restricted to the types of the underlying communication mechanism at the user interface avoids
pushing the types of the communication framework into user space as it is the case with plain CORBA,
for example. Furthermore, this independence allows to use types of widespread libraries like the STL
[113] in member functions of communication objects. Therefore, component builders do not need
additional glue logic to mediate between the component framework and their libraries. New member
functions can easily be added locally to communication objects without affecting other components or
inflating the interface that is visible across components. Communication objects focus on the content
to be transmitted. They remove the object member functions from the component interface and make
them to a component internal issue.

5.4.4 The User Access Modes

Figure 5.19 shows several access modes. The first approach is based on member functions which
are called and executed by the user thread. The synchronous access mode blocks until the overall
communication activity is completed or aborted. The asynchronous access mode supports deferred
reception of answers. The asynchronous access mode always provides a blocking and a non-blocking
member function to collect deferred answers. The blocking member function suspends the calling
task till the answer is available. The non-blocking member function does not suspend the calling task
but requires polling to detect whether the result has yet been received and can already be fetched.
Polling is executed locally based on the pattern internal state automatons and does not require any
external communication.

The second approach is based on handlers. It is best suited to process asynchronously received
requests and to implement data driven approaches. The handler is invoked by the thread of the frame-
work and in case of a passive handler, it is also completely executed by the thread of the framework.
Active handlers, in contrast, process requests in a separate thread and conserve the framework re-
sources. As shown in figure 5.19, results of a handler are provided to the communication pattern by
a separate answer member function and are not returned as return values by the handler. This is to
decouple the handler invocation from providing return values. This significantly simplifies the imple-
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Figure 5.19: Different access modes from left to right: User invoked synchronous and asynchronous
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mentation of diverse processing models like thread factories or processing chains where the request is
pipelined through various active processing units.

Pattern Service Requestor Service Provider Remark
Handler Member function Handler Member function

send - � � - -
query - � � - -
push newest - � - � -
push timed - � - � 1
event � � - � 2
wiring - � - - 3

� Handler at service provider to trigger data acquisition and distribution.
�

Handler at service provider to check event condition.
�

Service provider does not require user accessible interface.

Table 5.2: Overview on the user access modes of the communication patterns.

The assignment of user access modes to the communication patterns is summarized in table 5.2
and illustrated in figure 5.20. The assignment is based on an analysis of use cases and drops access
modes for which only very few use cases exist. Since both parts of a communication pattern are stand
alone entities, one can in principle provide any possible combination of user access modes with a
communication pattern. The service requestor, however, normally only requires a synchronous and
an asynchronous access mode to invoke services. The event client additionally provides a handler
based interface to support event driven architectures based on firing activations. A handler would also
make sense for the push client but it turned out that a data driven architecture with the push service is
implemented easier using a separate thread blocking on the member function based interface.

Service providers normally implement a handler based interface for easy handling of incoming
service requests. In case of the push newest and the event service, the activity of the service provider
is, however, not determined by asynchronously received requests. In fact, the push newest service
is activated each time new data is provided that is to be distributed. The event service provider is
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Figure 5.20: Visualization of the user access modes assigned to the communication patterns.

activated with every newly provided state description. A new state description initiates the testing
of the event condition. Therefore, both the push newest and the event pattern provide an interface
based on member functions only. A handler based approach is, however, used by the event pattern
for the implementation of the event condition and by the push timed pattern to handle the timer event
indicating that new data has to be acquired for distribution.

The user access modes are all thread safe and can be called from concurrent tasks without further
synchronization. This already moves a large source of errors and pitfalls in multithreaded programs
from the user scope into the responsibility of the framework.

Further analysis of the assignment of user access modes to communication patterns shows that
blocking member functions that spend significant time in the communication pattern occur only at
the service requestors. Method invocatios at the service providers are only used to provide calculated
results or to provide new data to be distributed to subscribed clients. These member function calls are
handled in very short time. In contrast, member functions at service requestors wait for an answer
or for the next arriving update. Since this may take an arbitrary long time, the service requestors
provide a blocking flag, which can be set to abort all blocking calls and to prevent subsequent calls
from blocking. This allows graceful deactivation of pending services when waiting is not appropriate
anymore.

5.4.5 Naming of Services

Communication patterns always provide a link between a service requestor and a service provider.
Although they can even be used to implement interfaces inside a component, both parts are normally
located not only in different components, but the components are also distributed over different hosts.
One therefore needs a scheme to locate and to address a specific service within a specific component.

Figure 5.21 illustrates the chosen approach. Component interfaces are tagged with user definable
names for clear and simple references. A name based approach is easy to use and allows intuitive
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Figure 5.21: Naming of components and services.

service designators. This results in ad-hoc understandable descriptions of component wirings.
Each component has a unique name. Services provided by a component are also denoted by

names that are unique within a component. Service requestors do not have public names since they
are not contacted as it is the case with service providers. Since links between service requestors and
service providers are always initiated from the service requestor, the latter forwards a reference to itself
to be henceforth accessible from the service provider without requiring a public identifier. Service
requestors can register themselves at the wiring service of their component to become named ports.
As named ports, service requestors can be wired with service providers from outside the component.
Port names also have to be unique within a component.

Services can now be clearly identified by a tuple
�
component, service

�
composed of the name

of the service providing component and the name of the service. A service requestor only needs to
know this tuple to connect to a service provider. The wiring pattern can now be based on fourtuples�
A:component, B:port, C:component, D:service

�
to connect the service requestor port B of com-

ponent A with the service provider D of component C. The framework, of course, only establishes
connections to services which are compatible with the requestor.

5.4.6 The Overall Picture

The overall picture of the approach is shown in figure 5.22. All component interfaces are composed
of standardized patterns which transmit communication objects. Components can be assembled to
form complex applications due to standardized interface patterns and can even be wired dynamically
at runtime from inside and outside a component. Communication patterns separate the communica-
tion from the application architecture, follow the design goal of decoupling and provide transparency
aligned to the needs of robotic applications.

Table 5.3 summarizes the externally visible interface of each component shown in figure 5.22.
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Figure 5.22: The overall picture of the service based component approach.

first second third
component component component

used service port used service port used service port
A : push newest � D � one D : query � R,A � one G : wiring -
B : send � C � two E : query � S,B � two H : send � C � three
C : query � R,A � - F : query � R,A � -

provided service name provided service name provided service name
M : wiring - P : wiring - S : wiring -
N : send � C � service a Q : send � C � service f T : query � R,A � service b
O : query � R,A � service b R : push newest � D � service g U : query � R,B � service k

Table 5.3: Summary of the externally visible component interfaces of the example of figure 5.22.

The interfaces A, B, D, E and H expose themselves as ports and are thus wireable from outside a
component. The wiring master G can access all three components via their wiring slaves M, P and
S. In principle, one can connect A with R and one can connect B with N and Q and H with N and Q.
Furthermore, C, D and F can be connected with O and T and there is no appropriate service available
for E. The wirings configurable from outside a component via the ports are summarized in table 5.4.

The level of transparency provided by the communication patterns is just such that one can still
control and adjust major aspects of components in distributed systems without abandoning the ameni-
ties of transparency. Access transparency, for example, hides differences in data representations. That
is implemented within communication objects by standardized descriptions of data structures to be
transmitted. Location transparency is provided by the naming service used to identify services. Ac-
cessing a component on a different host is transparent but due to the fact that component external
interactions are always based on communication patterns, a component builder is always fully aware
of when communication occurs. This is further ensured by always transmitting communication objects
by value. Therefore, using communication objects within a component never results in unexpected re-
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�
component, port � �

component, service �
A :

�
first, one � R :

�
second, service g �

B :
�
first, two � N :

�
first, service a � , Q :

�
second, service f �

D :
�
second, one � O :

�
first, service b � , T :

�
third, service b �

E :
�
second, two � –

H :
�
third, three � N :

�
first, service a � , Q :

�
second, service f �

Table 5.4: Summary of the wirings of the example shown in figure 5.22 settable from outside a com-
ponent by a wiring master.

mote object access which causes unforeseen and large delays. Compared to this, when using standard
distributed object approaches, it is very hard for component builders to be always fully aware of the
total amount of communication involved in a simple method call. The presented approach, therefore,
greatly simplifies the predictability of the overall timing behavior of a component. Migration trans-
parency is given because services are always only connected by names irrespective of where they are
located. By purpose, the designator of a service comprises not only the name of the service but also the
name of the service providing component. Connecting to a service, therefore, always clarifies which
component is involved and knowing where that component is located gives a rough estimate of the
expected delay in communication. The dynamic wiring of components even allows transparent access
to compatible services in different components located on arbitrary hosts. Controlling the wirings,
however, allows the application builder to tune the overall system performance by using colocated
services for critical interactions. The approach does not support relocation transparency which would
hide the fact that a resource has moved to another location while in use. This would make it nearly
impossible for application builders to predict the expected delays in communication when plugging
together an application. The approach, however, provides transparency with respect to concurrency
which is hiding that a resource is shared by several competitive users. The communication patterns
support concurrent access not only from inside a component but also at the component level where
any number of clients can access a server. The user interfaces of the patterns are defined such that the
component builder can decide on both the processing model and the provided resources. For example,
one can attach a thread pool, a single thread with a processing queue or even a passive handler only.
This again is important to achieve predictability which is difficult if the resources are assigned behind
the scenes of a framework.

5.5 The Component Builder View on the Approach

Implementing a framework based on the proposed approach requires a precise specification of the
communication patterns and their access modes. The specification can be split into aspects that are
relevant to the framework builder only and those that define the user interface and that are thus also
relevant to the framework users. Aspects that are only relevant to the framework builder concern the
pattern internal communication across components and the pattern internal organization of the various
user access modes. These are described in section 5.6. In contrary, the component builder focuses
on the semantics of the access modes of the communication patterns and aspects of the overall usage
of components. Generally, means to describe the details of the proposed approach range from formal
methods to concrete implementations. Using formal methods would result in hard to read and unnec-
essarily complex specifications that completely ignore software technical aspects. Implementations,
on the other hand, get lost in details which can be solved in an arbitrary manner and miss the abstrac-
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tion to get the principles behind an approach. Nevertheless, many aspects are best illustrated based
on a concrete implementation. The user view, therefore, uses C++ notions wherever this significantly
simplifies the description. This, however, does not mean that the presented concepts cannot be imple-
mented in any other object oriented language. An overview on the core patterns of the SMARTSOFT

framework and their interactions is given in figure 5.23.

...

...

...

...

...

Component Management

Wiring Master

Wiring Slave
Queue Query Server Handler <R,A>

(active)

Queue Push Timed Handler <D>
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Send Server <C>

Event Server <P,E,S>

Query Server <R,A>

Push Timed Client <D>

Event Client <P,E>

Push Newest Client <D>

Query Client <R,A>

Send Client <C>

Event Handler <E>

Query Server Handler <R,A>

Queue Send Server Handler <C>
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Send Server Handler <C>

Event Test Handler <P,E,S>
Queue Event Handler <E>
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Push Newest Server <D>

Push Timed Server <D> Push Timed Handler <D>

interacts with

derived from

Figure 5.23: The core patterns of the SMARTSOFT framework. Active handlers are provided for those
patterns where use cases indicate time intensive computations in handlers. Italic class names indicate
abstract base classes.

5.5.1 The Component Management

A central role within every component is played by the component management class shown in figure
5.24. Each component possesses exactly one instance of this class, which wraps the basic frame-
work infrastructure. The constructor of the component management class requires the name of the
component which is subsequently used to address this component by name.

Component Management

~SmartComponent() throw() [virtual]
SmartComponent(name:const string&,argc:int&,argv:char**) throw(SmartError)+

+

blocking(flag:const bool) : StatusCode throw()

run() : StatusCode throw()

+

+

// blocking mode effective component wide

// operates framework activities

Figure 5.24: The class diagram of the component management class.

The framework is normally operated by the main thread of a component which calls the run
member function. The framework activities are completely independent of the user activities and
keep the component external communication alive. All user activities within a component are moved
to separate threads as shown in figure 5.25.
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Figure 5.25: User activities are separated
from the framework.

component management

service requestor

service provider

service requestor

Component blocking

blocking

blocking

Figure 5.26: The blocking mode of the com-
ponent management which is effective compo-
nent wide.

Furthermore, the component management class manages a blocking mode indicator which is ef-
fective component wide as illustrated in figure 5.26. If the blocking mode is changed from true to
false, all blocking member functions of all services of a component are properly discarded and any
subsequent calls to blocking member functions return immediately with an appropriate status code.
This is of great use for graceful deactivation of user activities within a component and is used by state
management mechanisms. The component management class is the obvious place to handle the com-
ponent wide blocking mode since there anyway is a close interaction of the component management
with every service requestor and service provider of a component.

5.5.2 The Communication Patterns

Each communication pattern consists of a service provider and a service requestor. Figure 5.27 shows
the user interfaces common to all communication patterns except the wiring pattern.

Service Requestor

Service Provider

Client(:SmartComponent*) throw(SmartError)
Client(:SmartComponent*, server:const string&, service:const string&) throw(SmartError)
Client(:SmartComponent*, port:const string&, slave:WiringSlave*) throw(SmartError)
~Client() throw() [virtual]

add(:WiringSlave*, port:const string&) : StatusCode throw()
remove() : StatusCode throw()

connect(server:const string&, service:const string&) : StatusCode throw()
disconnect() : StatusCode throw()

blocking(flag:const bool) : StatusCode throw()

Server(:SmartComponent*, service:const string&) throw(SmartError)
~Server() throw() [virtual]

+
+
+
+

+
+

+
+

+

+
+

Figure 5.27: The user API common to all communication patterns except the wiring pattern.

The constructor of a service provider always requires the specification of the name of the offered
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service. Constructors of service requestors always offer three different modes. The first option is
to create an instance not connected to a service provider. The second option is to connect to the
service specified by component name and service name. The constructor blocks until the requested
service gets available and until the connection is established. The constructor fails if the chosen
service provider is incompatible. The last option is to expose the service requestor instance as port
wireable from other components. The constructor expects a port name which can later on be used
by the wiring pattern to connect this port with an appropriate service provider. The constructor used
to create a service requestor instance does not determine any future mode of a service requestor. A
service requestor can decide on being wireable from outside the component at any point of time using
the add/remove member functions. Likewise, the connection to a service provider can be changed at
any point of time using the connect/disconnect member functions.

connect Connect this service requestor to the denoted service provider. An already established con-
nection is first disconnected.

ok Connected to the specified service provider.
service unavailable The specified service provider is not available and the requested connection cannot be estab-

lished. The service requestor is not connected to any service provider.
service incompatible The specified service provider is not compatible to the service requestor and can therefore not

be connected. The service requestor is not connected to any service provider.
communication error Something went wrong at the level of the intercomponent communication and the connection

is not established. The service requestor is not connected to any service requestor.
error Something went wrong and no connection is established. The service requestor is not con-

nected to any service provider.

disconnect Disconnects the service requestor from the service provider. A disconnect always aborts and
properly cleans up any pending communication.

ok Disconnected from the service provider.
communication error Something went wrong at the level of the intercomponent communication. At least the service

requestor part is in the disconnected state independently of eventually not properly executed
clean up procedures at the service provider.

error Something went wrong. At least the service requestor part is in the disconnected state inde-
pendently of eventually not properly executed clean up procedures at the service provider.

Table 5.5: The connect/disconnect member functions to change the wiring at runtime from inside the
component.

Table 5.5 explains the semantics of the connect/disconnect member functions of service requestors.
The connect member function expects a tuple

�
component, service

�
which denotes the component and

the service to which the service requestor is to be connected to. It then checks whether the service
provider is compatible in terms of the communication pattern and the communication objects. The
disconnect member function disconnects the service requestor from the service provider. The patterns
have built-in mechanisms to allow changes to be made to the link between a service requestor and a
service provider at any point of time without further synchronization at the user level. A disconnect
for example correctly aborts blocking calls which would otherwise keep waiting for messages not
arriving anymore after a disconnect.

The add/remove member functions are summarized in table 5.6. Generally, the add member
function exposes a service requestor as port via the wiring pattern. The wiring pattern can establish
connections from outside a component. The add member function expects a port name and adds
the service requestor to the wiring slave of the component. The service requestor gets wirable from
outside via an externally visible port. This enables an external wiring master to connect that service
requestor via its port name with appropriate service providers. The remove member function removes
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add Add this service requestor to the set of ports wireable via the wiring pattern from outside the
component. Already established connections keep valid. If this service requestor is already
exposed as port, it is first removed and then added with the new port name.

ok Service requestor added to the set of ports.
port already used Port name already in use and thus this service requestor now not available as port with that

name.
no wiring slave No wiring slave provided with object creation and service requestor cannot be exposed as port.
error Something went wrong and this service requestor is not available as port.

remove Remove this service requestor from the set of ports wireable via the wiring pattern from out-
side the component. Already established connections keep valid but can now be changed only
from inside and not from outside this component anymore.

ok Service requestor not exposed as port anymore (or was not registered as port or no wiring
slave available).

error Something went wrong but the service requestor is removed from the set of ports in any case.

Table 5.6: The add/remove member functions to expose a service requestor as wireable port.

a previously added service requestor from the wiring slave. Again, the patterns take care that one can
add or remove a port at any point of time without further synchronization at the user level.

blocking Allow blocking calls or abort and reject blocking calls.

ok Changed the blocking mode of the service requestor.
error Something went wrong.

Table 5.7: The blocking member function to discard blocking member function calls.

Furthermore, each service requestor also provides a blocking member function to set an internal
state indicating whether blocking is allowed. A service requestor blocks in member functions calls
only if both the service requestor and the component wide indicator allow blocking. If blocking is set
to false then already blocking calls are aborted and subsequent calls return immediately. In both cases,
the returned status code is set to cancelled. Again, no further synchronization is needed at the user
level. The blocking member function provides the basis for ordered suspension of communication
activities. This is needed for graceful deactivation of component activities and is the basis for a
component state management.

5.5.2.1 The Send Pattern

The send pattern implements a one-way communication. It provides a member function based inter-
face at the service requestor and a handler based interface at the service provider as shown in the class
diagrams in figure 5.28.

The service requestor can send communication objects to the service provider using the send
member function shown in detail in table 5.8. At the service provider, each incoming communication
object is forwarded to the registered handler for further processing. The service requestor and the
service provider of the send pattern are applied by binding the templates with a communication object.
The service provider additionally requires a handler that has to be derived from the abstract handler
class to provide an implementation of the handleSend member function which processes the incoming
commands.
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send Perform an asynchronous one-way communication.

ok Everything is ok and communication object sent to server.
disconnected The client is disconnected and no send can be made.
communication error Communication problems, data not transmitted.
error Something went completely wrong.

Table 5.8: The send member function to perform a one-way communication.

Figure 5.29 shows the sequence diagram of both the client and the server side behavior. Due
to the used passive handler, the execution of the second received command is delayed until the first
command is finished. The Queue Send Server Handler is a decorator for the handler class to execute
the handleSend member function in a separate thread. Its handleSend member function enqueues all
commands in a queue. From there, they are processed by the thread of the active handler independently
of the communication activity by calling the original handleSend member function.
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C

C

C

C

Send Client

SendClient(:SmartComponent*) throw(SmartError)+
SendClient(:SmartComponent*, server:const string&, service:const string&) throw(SmartError)
SendClient(:SmartComponent*, port:const string&, slave:WiringSlave*) throw(SmartError)
~SendClient() throw() [virtual]

add(:WiringSlave*, port:const string&) : StatusCode throw()
remove() : StatusCode throw()

connect(server:const string&, service:const string&) : StatusCode throw()
disconnect() : StatusCode throw()

blocking(flag:const bool) : StatusCode throw()

send(:const C&) : StatusCode throw()

+
+
+

+
+

+
+

+

+

Send Server

SendServer(:SmartComponent*, service:const string&, :SendServerHandler<C>&) throw(SmartError)
~SendServer() throw() [virtual]

+
+

Send Server Handler {abstract}

handleSend(:const C&) : void throw() [pure virtual]+

Queue Send Server Handler {active}

Figure 5.28: The class diagrams of the send pattern.
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Figure 5.29: The client and server side behavior of the send pattern.
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5.5.2.2 The Query Pattern

The query pattern implements a two-way communication. It provides a member function based inter-
face at the service requestor and a handler based interface at the service provider as shown in figure
5.30. The templates require two communication objects, one for the request and one for the answer.

A
R

A
R

A
R

A
R

Query Client

QueryClient(:SmartComponent*) throw(SmartError)
QueryClient(:SmartComponent*, server:const string&, service:const string&) throw(SmartError)
QueryClient(:SmartComponent*, port:const string&, slave:WiringSlave*) throw(SmartError) 
~QueryClient() throw() [virtual]

add(:WiringSlave*, port:const string&) : StatusCode throw()
remove() : StatusCode throw()

connect(server:const string&, service:const string&) : StatusCode throw()
disconnect() : StatusCode throw()

blocking(flag:const bool) : StatusCode throw()

query(request:const R&, answer:A&) : StatusCode throw()
request(request:const R&, id:QueryId&) : StatusCode throw()
receive(id:const QueryId, answer:A&) : StatusCode throw()
receiveWait(id:const QueryId, answer:A&) : StatusCode throw()

+
+
+
+

+
+

+
+

+

+
+
+
+
+ discard(id:const QueryId) : StatusCode throw()

Query Server

QueryServer(:SmartComponent*, service:const string&, :QueryServerHandler<R,A>&) throw(SmartError)
~QueryServer() throw() [virtual]

StatusCode answer(:const QueryId,answer:const A&) throw()

+
+

+

Query Server Handler {abstract}

handleQuery(server:QueryServer<R,A>&, id:const QueryId, request:const R&) : void throw() [pure virtual]+

Queue Query Server Handler {active}

StatusCode check(:const QueryId) throw()
StatusCode discard(:const QueryId) throw()

+
+

Figure 5.30: The class diagrams of the query pattern.

The Client Side The client interface provides two different access modes. The first one is the
standard blocking query shown in table 5.9 which forms a synchronous interface. The second access
mode forms an asynchronous interface and supports the deferred reception of answers for previously
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invoked requests and is shown in tables 5.10, 5.11, 5.12 and 5.13. That access mode provides both
blocking and non-blocking member functions. It is particularly useful for interleaved requests of
different queries invoked at different query clients connected to different service providers which then
calculate the responses in parallel.

query Perform a synchronous blocking query that is invoke the request and await the response.

ok Everything is ok and answer contains the answer.
cancelled Blocking is not allowed or is not allowed anymore and, therefore, the pending query is aborted,

the answer is lost and no valid answer is returned.
disconnected The client is either disconnected and no query can be made or it got disconnected and a

pending query is aborted without answer. In both cases, answer is not valid.
wrong identifier The query got discarded at the service provider and thus, no valid answer is returned.
communication error Communication problems, answer not valid.
error Something went completely wrong and answer is not valid.

Table 5.9: The query member function to perform a two-way communication.

request Invoke a query and receive the answer later (asynchronous).

ok Everything is ok and id is a valid query identifier used to either fetch or discard the answer.
disconnected Request is rejected since client is not connected to a server and therefore id is not a valid

identifier.
communication error Communication problems, id is not valid.
error Something went completely wrong, id is not valid.

Table 5.10: Invoking a request with deferred answer at the service requestor.

receive Non-blocking call to fetch the answer belonging to the given identifier (asynchronous).

ok Everything is ok and answer contains the answer. The id is consumed and is not valid any
longer.

no data The answer is not yet available, therefore try again later. The id keeps valid but answer
contains no answer.

disconnected The answer belonging to the identifier cannot be received anymore since the client got discon-
nected. Id is not valid any longer and no valid answer is returned.

wrong identifier No pending query with this identifier available, therefore no valid answer returned. The id
either was already invalid or got invalid. It gets invalid by consuming it, either by a concurrent
call to the receive or the receive wait method with the same id or by a discard, either at the
client or at the server.

error Something went completely wrong, id is not valid any longer and answer contains no answer.

Table 5.11: Getting a deferred answer at the service requestor.

Every request is assigned a unique identifier which is later on used to fetch the correct answer. An
identifier stays valid as long as it is not consumed. Although it is permitted, it makes no sense to use
the same identifier in concurrent method calls since only one invocation can consume the identifier
and all others experience a wrong identifier status. An identifier gets consumed by the receive and
the receive wait methods either by returning a valid answer or by reporting a disconnected state. A
query identifier can also be consumed by a discard, either called at the service requestor or at the
service provider. The receive and the receive wait method then return a wrong identifier status since



90 CHAPTER 5. THE SMARTSOFT FRAMEWORK

receiveWait Blocking call to fetch the answer belonging to the given identifier (asynchronous).

ok Everything is ok and answer contains the answer.
cancelled Blocking is not allowed or is not allowed anymore and therefore blocking call is aborted and

no valid answer is returned. The query identifier keeps valid.
disconnected The answer belonging to the identifier cannot be received anymore since the client got discon-

nected. Id is not valid any longer and no valid answer is returned.
wrong identifier No pending query with this identifier available, therefore no valid answer returned. The query

identifier either was already invalid or got invalid (see receive method).
error Something went completely wrong, id is not valid any longer and answer contains no answer.

Table 5.12: Waiting for a deferred answer at the service requestor.

discard Discard the deferred answer with the given identifier and invalidate the identifier. Call this
member function if you do not want to get the answer of a request anymore which was invoked
by request. Aborts a blocking receive wait and also informs the service provider about the
discarded request.

ok Everything is ok and the pending query with identifier id is discarded.
wrong identifier No pending query with this identifier available.
error Something went completely wrong and id is not valid any longer.

Table 5.13: Discard a deferred answer at the service requestor.

the identifier in use got consumed. In case the identifier in use gets consumed, a blocking receive wait
method gets unblocked.

Even though the query identifier used inside the query method is never returned to the user level
and can thus not be used by any client side method, the query method can return a wrong identifier
status since the request can get discarded at the service provider. The wrong identifier status indicates
that the request either got rejected at the service provider before it got forwarded to the request handler
or got discarded by calling the discard method at the service provider. In case of using the request
method to invoke a query, the identifier can get discarded also by the client side discard method.

A query identifier is not consumed by a disconnect and answers already received but not yet
fetched are not affected by a disconnect. Disconnecting a query client not only correctly sets the
status of still open answers and aborts blocking calls with the appropriate status code but a disconnect
also cleans up the list of open requests at the service provider to make sure that answers provided for
meanwhile disconnected clients are discarded.

The status codes are organized such that always only the most important reason is returned. For
example, one first has to possess a valid identifier before one can get more details on the state of
a request. Thus, an invalid identifier is the most important reason and being disconnected is more
important than the state of the blocking mode since the blocking mode is of no interest as soon as
one cannot get the answer anymore. Thus, the wrong identifier status is returned in case the used
identifier is not valid or in case it got invalid. The disconnected status is returned as soon as there
is no server connection available irrespective of the blocking mode. The blocking mode is the third
most important reason for refusing a blocking call and therefore cancelled is returned if the identifier
is valid and the client is connected to a server but blocking is not allowed anymore.

Figure 5.31 summarizes the behavior of the client side of the query pattern. A client can handle
any number of concurrent and nested queries. Figure 5.32 shows the effect of changing the blocking
mode and figure 5.33 shows a disconnect performed during active queries.
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Figure 5.31: Sequence diagram of the concurrent and interleaved use of the client side user interface
of the query pattern.
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answer is lost

aborted and
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answer
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Figure 5.32: The client side behavior of the query pattern when blocking is set to false.
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Figure 5.33: The client side behavior of the query pattern when client is disconnected and recon-
nected to another service provider.
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The Server Side The server provides a handler based interface to which every incoming request is
forwarded to. The abstract handler class requires to implement the handle query member function
for processing incoming requests. An identifier provided at the handler with every request has to be
passed on with the answer to non-ambiguously assign answers to open requests and to properly send
back the answer inside the pattern. The server makes no assumptions on the order of the answers and
it is up to the user of the pattern to implement any kind of processing mechanism such as prioritized
queues or even a processing pipeline. The separate answer member function makes it much simpler to
implement different processing models than it would be the case with a handler returning the answer.
The handler can again be decorated to become an active handler which executes the handle query
member function in a separate thread and manages requests via a queue, for example.

answer Provide answer to be sent back to the requestor.

ok Everything ok and answer was sent to requesting client. The identifier is not valid any longer.
wrong identifier No pending query with that identifier known. The id either never has been valid, the answer

was already provided or that request got discarded.
disconnected Answer not needed anymore since requesting client got disconnected meanwhile. The answer

is discarded and the identifier is not valid any longer.
communication error Communication problems.
error Something went completely wrong.

Table 5.14: Provide the answer at the query service provider.

check Check whether the identifier still belongs to a request that needs to be answered.

ok Identifier is still valid and request still needs to be processed since response is expected.
wrong identifier No pending query with that identifier known. The id either never has been valid, the answer

was already provided or that request got discarded. In any case, the processing of the enquired
id need not to be continued.

disconnected Answer not needed anymore since requesting client got disconnected meanwhile. The identi-
fier is not valid any longer.

error Something went completely wrong.

Table 5.15: Check at the service provider whether request still has to be processed.

discard Discard that request and invalidate the identifier. Call this member function if the request has
to be discarded for any reason.

ok Successfully discarded request and also informed client about the discarded request in case
the identifier belonged to a still to be processed request. The identifier is not valid anymore.

wrong identifier No pending query with that identifier known (see check method).
error Something went completely wrong.

Table 5.16: Discard request at the service provider.

Figure 5.14 shows the answer method to return a response. Each request can be answered only
once and the response gets discarded in case the client got disconnected meanwhile or in case the
client discarded the request. Due to the handler based interface, there is no simple way to abort the
processing of no longer needed requests. All requests are immediately forwarded to the handler and
are never stored in the service provider. Thus, the check method shown in figure 5.15 allows to check
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whether a request still needs to be processed. With the discard method shown in table 5.16, one can
discard a request in case the service provider is overloaded, for example. The discard properly informs
the service requestor so that, for example, all blocking calls get properly unblocked. The server side
behavior of the query pattern is summarized in figures 5.34 and 5.35.

:QueryServer :QueryHandler

R1 / Client 1

R2 / Client 1

A1 / Client 1

R1 / Client 2

disconnect

A1 / Client 2 ok

disconnected

ok

handleQuery(), R1 C1

handleQuery(), R2 C1

handleQuery(), R1 C2

answer(), A1 C1

answer(), A2 C1

answer(), A1 C2

Client 1

Figure 5.34: The server side behavior of the
query pattern with a passive handler.

:QueryServer

R1 / Client 1

R2 / Client 1

:QueryHandler

handleQuery(), R2 C1

R1 / Client 2

disconnect
Client 1

handleQuery(), R1 C1

answer(), A1 C1
ok

A1 / Client 1

handleQuery(), R1 C2

answer(), A2 C1
disconnected

ok
answer(), A1 C2

A1 / Client 2

Figure 5.35: The server side behavior of the
query pattern with an active handler.
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5.5.2.3 The Push Newest Pattern

The push newest pattern provides a member function based interface at both the service provider and
the service requestor as shown in figure 5.36.

D

D

Push Newest Client

Push Newest Server

PushNewestClient(:SmartComponent*) throw(SmartError)
PushNewestClient(:SmartComponent*, server:const string&, service:const string&) throw(SmartError)
PushNewestClient(:SmartComponent*, port:const string&, slave:WiringSlave*) throw(SmartError)
~PushNewestClient() throw() [virtual]

add(:WiringSlave*, port:const string&) : StatusCode throw()
remove() : StatusCode throw()

connect(server:const string&, service:const string&) : StatusCode throw()
disconnect() : StatusCode throw()

blocking(flag:const bool) : StatusCode throw()

subscribe() : StatusCode throw()
unsubscribe() : StatusCode throw()
getUpdate(data:D&) : StatusCode throw()
getUpdateWait(data:D&) : StatusCode throw()

PushNewestServer(:SmartComponent*, service:const string&) throw(SmartError)
~PushNewestServer() throw() [virtual]

put(data:const D&) : StatusCode throw()

+
+
+
+

+
+

+
+

+

+
+
+
+

+
+

+

Figure 5.36: The class diagrams of the push newest pattern.

The Client Side A client needs to be subscribed to a service provider to get updated as soon as
new data is available at the server. A client can, of course, only get subscribed if it is connected to
a service provider. A disconnect automatically performs an unsubscribe. Once subscribed, a client
always holds the latest data from the service provider. A client gets its first data with the first update
after subscription and not with subscribing. This prevents the client from holding data which has been
calculated before subscription. This, of course, can result in quite a long time before the first data
is available at the client. If this is undesired for a service, it is the responsibility of the component
builder to eventually distribute the same data several times. This avoids that new subscriptions are
kept uninformed for a too long time.

A client can either get the currently available latest data by calling getUpdate or it can explicitly
wait for the next update by calling getUpdateWait. Again, only the most important reason for data
not being available is returned. Being disconnected is more important than being unsubscribed and
that is more important than being cancelled. The client side behavior of the push newest pattern is
summarized in figure 5.37.
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subscribe Subscribe at the server to get updates as soon as new data is available there.

ok Everything is ok and client is subscribed.
disconnected Client is not connected to a server and can therefore not subscribe for updates. Client is still

unsubscribed.
communication error Communication problems and client is not subscribed.
error Something went completely wrong and client is not subscribed.

Table 5.17: Subscribe for updates at the client side.

unsubscribe Unsubscribe to get no more updates.

ok Everything is ok and client is now unsubscribed or client has already been unsubscribed. All
blocking calls are aborted with the appropriate status and yet received and still buffered data
is deleted to avoid returning old data.

communication error Communication problems and client is not unsubscribed.
error Something went completely wrong and client is not unsubscribed.

Table 5.18: Unsubscribe at the client side to get no more updates.

getUpdate Non-blocking call to immediately return the latest available data buffered at the client side
from the most recent update.

ok Everything is ok and latest data returned.
no data Client has not yet received an update since subscription and therefore no data is available and

no data is returned.
unsubscribed No data available since client is not subscribed and can thus not receive updates.
disconnected No data available since client is even not connected to a server.
error Something went completely wrong and no valid data returned.

Table 5.19: Get the latest data that is available at the client side.

getUpdateWait Blocking call which waits until the next update is received.

ok Everything is ok and just received data is returned.
cancelled Blocking not allowed or not allowed anymore. Waiting for the next update is aborted and no

valid data is returned.
unsubscribed Client is unsubscribed or got unsubscribed and member function returns without valid data.
disconnected Client is not connected or got disconnected and member function returns without valid data.
error Something went completely wrong and no valid data returned.

Table 5.20: Wait for the next update at the client side.

put Send updated data to all subscribed clients.

ok Everything is ok.
communication error Communication problems caused by at least one client. The other clients are updated correctly.
error Something went completely wrong with at least one client.

Table 5.21: Provide data at the server side to be sent to all subscribed clients.
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getUpdate()

user visible pattern internal user visible pattern internal

blocking
not allowed
anymore

User:Task User:Task

Figure 5.37: The client side behavior of the user interface of the push newest pattern.

The Server Side The server side user interface is shown in table 5.21. Calling the put member
function distributes the updated data to all subscribed clients as shown in figure 5.38.

:PushNewestServerUser:Task

send newest data D to clientput(D)

for every subscribed client

Figure 5.38: Sequence diagram of the server side operation of the push newest pattern.
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5.5.2.4 The Push Timed Pattern

The basics of the push timed pattern are the same as that of the push newest pattern. The push timed
pattern however distributes data on a regular basis and therefore provides an additional mechanism to
regularly trigger data distribution. The class diagrams are shown in figure 5.39.

D

D

D
Push Timed Handler {abstract}

handlePushTimer(:PushTimedServer<D>&) : void throw() [pure virtual]+

D

Push Timed Client

Push Timed Server

getServerInfo(cycleTime:double&,serverState:bool&) : StatusCode throw()

subscribe(interval:const int) : StatusCode throw()

getUpdate(data:D&) : StatusCode throw()
getUpdateWait(data:D&) : StatusCode throw()

unsubscribe() : StatusCode throw()

blocking(flag:const bool) : StatusCode throw()

disconnect() : StatusCode throw()
connect(server:const string&, service:const string&) : StatusCode throw()

PushTimedClient(:SmartComponent*) throw(SmartError)
PushTimedClient(:SmartComponent*, server:const string&, service:const string&) throw(SmartError)
PushTimedClient(:SmartComponent*, port:const string&, slave:WiringSlave*) throw(SmartError)
~PushTimedClient() throw() [virtual]

add(:WiringSlave*, port:const string&) : StatusCode throw()
remove() : StatusCode throw()

+
+
+
+

+
+

+
+

+

+
+
+
+
+

+

+

PushTimedServer(:SmartComponent*, service:const string&, :PushTimedHandler<D>&,
cycleTime:const double) throw(SmartError)

~PushTimedServer() throw() [virtual]+

start() : StatusCode throw()
stop() : StatusCode throw()
put(data:const D&) : StatusCode throw()

+
+

Queue Push Timed Handler {active}

Figure 5.39: The class diagrams of the push timed pattern.

The Client Side The client can subscribe to get every n-th update which often makes sense if the
client otherwise gets overwhelmed by updates. To keep the management of the update rates as simple
as possible, only whole-numbered multiples of the server cycle time are supported. The getServerInfo
member function shown in table 5.26 provides all the necessary information for clients to decide on
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the appropriate update rate. Both the getUpdate and the getUpdateWait member functions provide
an additional return code indicating that no data is available due to an inactive server. Furthermore,
blocking calls are aborted with the not activated status code if the server gets deactivated. As can
be seen from table 5.25, getUpdateWait returns not activated instead of cancelled for a connected
and subscribed client regardless of the blocking mode as soon as the push timed server is deactivated.
Again, the status codes are ordered such that only the most causal reason is returned. A disconnect au-
tomatically performs an unsubscribe. The client side behavior of the push timed pattern is summarized
in figure 5.40.

subscribe Subscribe at the server to periodically get every n-th update.

ok Everything is ok and client is subscribed. A newly subscribed client gets the next available
new data and is then updated with regard to its individual update cycle.

disconnected Client is not connected to a server and can therefore not subscribe for updates. Client is still
unsubscribed.

communication error Communication problems and client is not subscribed.
error Something went completely wrong and client is not subscribed.

Table 5.22: Subscribe for updates.

unsubscribe Unsubscribe to get no more updates.

ok Everything is ok and client is now unsubscribed or client has already been unsubscribed. All
blocking calls are aborted with the appropriate status and yet received and still buffered data
is deleted to avoid returning old data.

communication error Communication problems and client is not unsubscribed.
error Something went completely wrong and client is not unsubscribed.

Table 5.23: Unsubscribe to get no more updates.

getUpdate Non-blocking call to immediately return the latest available data buffered at the client side
from the most recent update.

ok Everything is ok and latest data returned.
no data Client has not yet received an update since subscription and therefore no data is available and

no data is returned.
not activated The server is currently not active and does therefore not provide updates at the expected rate.

No valid data returned.
unsubscribed No data available since client is not subscribed and can therefore not receive updates.
disconnected No data available since client is even not connected to a server.
error Something went completely wrong and no valid data returned.

Table 5.24: Get the latest available data.

The Server Side The server provides a handler which is called each time the next update is due. The
handler is operated by the singular component central timer provided by the component management
to save resources. Again, a decorator can be used to convert the handler into an active object in case
one wants to perform long running activities within the handler. As with the query handler, a separate
member function is used to provide the data that is to be distributed to the server pattern as shown



5.5. THE COMPONENT BUILDER VIEW ON THE APPROACH 101

getUpdateWait Blocking call which waits until the next update is received.

ok Everything is ok and just received data is returned.
cancelled Blocking is not allowed or not allowed anymore. Waiting for the next update is aborted and

no valid data is returned.
not activated The server is currently not active and does therefore not provide updates at the expected rate.

No valid data returned.
unsubscribed Returns immediately without data if client is not subscribed.
disconnected Returns immediately without data since client is even not connected to a server.
error Something went completely wrong and no valid data returned.

Table 5.25: Wait for the next update.

getServerInfo Get cycle time and server state.

ok Everything is ok and returned values are valid.
disconnected Client is not connected to a server and can therefore not get any valid server info.
communication error Communication problems and returned server info is not valid.
error Something went completely wrong and no valid server info returned.

Table 5.26: Get the server state.

in table 5.29. One of the advantages is that one can use any mechanism to provide the next update
without being confined to a handler mechanism. The update cycles are managed by counters that are
updated inside the put member function. Therefore arbitrarily calling the put member function and
ignoring the timing as indicated by the time triggered handler would unsettle the update cycles. The
put member function returns not activated in case of a deactivated server. In that case no update is
distributed to any clients.

Any state change performed by the start and the stop member functions is reported to the sub-
scribed clients. If a server gets deactivated, the timer to trigger the handler to invoke the next update is
deactivated and blocking calls in subscribed clients are aborted with the not activated return code. The
client also gets the current server state with every subscription for proper initialization of the client’s
knowledge on the server state. The activation restarts the timer to trigger the handler and resets all
update counters. Therefore all subscribed clients get the first update after activation and thereafter
only those fitting into their individual cycles. Figure 5.41 summarizes the server side behavior of the
push timed pattern.

start Activate the server. The activation starts the timer which signals when the next update is due.

ok Everything is ok.
communication error Communication problems with at least one client which then is not informed on the server

state change.
error Something went completely wrong with at least one client which then is not informed on the

server state change.

Table 5.27: Activate the server.
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User:Task :PushTimedClient

update #3

getUpdateWait()
not activated

ok, update #3
getUpdate()

getUpdateWait()

not activated
server stopped

update #2 is
never received
since suscription
is with n=2

subscribe(), n=2
ok

getUpdate()
ok, update #1

no data
getUpdate()

ok, update #1

getUpdateWait()

update #1

Figure 5.40: The client side behavior of the user interface of the push timed pattern.

stop Deactivate the server. The timer which signals when the next update is due is stopped.

ok (see above)
communication error (see above)
error (see above)

Table 5.28: Deactivate the server.

put Provide new data which is sent to all subscribed clients taking into account their individual
update rates.

ok Everything is ok.
not activated Server is stopped and does therefore not distribute any data to clients. In that case, update

interval counters are not touched.
communication error Communication problems caused by at least one client. The other clients are updated correctly.
error Something went completely wrong with at least one client.

Table 5.29: Provide data for subscribed clients taking into account their individual update rates.

User:Task :PushTimedServer :PushTimedHandler

called from

management class

component central
timer managed
by the component

check update

distribute update

interval of each
suscription and

accordingly

start()
ok

handlePushTimer()

ok
stop()

put()

Figure 5.41: The server side behavior of the user interface of the push timed pattern with an active
handler.
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5.5.2.5 The Event Pattern

The user interface of the event pattern is summarized in the class diagrams in figure 5.42. The client
part is parameterized by the communication objects for the activation parameters P and for the firing

E
P

E
Event Handler {abstract}

handleEvent(identifier:const EventId, event:const E&) : void throw() [pure virtual]+

E

S
E
P

S
E
P

Queue Event Handler {active}

Event Server

EventServer(:SmartComponent*, service:const string&, :EventTestHandler<P,E,S>&) throw(SmartError)
~EventServer() throw() [virtual]

put(state:const S&) : StatusCode throw()

Event Test Handler {abstract}

test(parameter:P&, event:E&, state:const S&) : bool throw() [pure virtual]

+
+

+

+

Event Client

EventClient(:SmartComponent*, server:const string&, service:const string&) throw(SmartError)

EventClient(:SmartComponent*, :EventHandler<E>&) throw(SmartError)
EventClient(:SmartComponent*, port:const string&, :WiringSlave*) throw(SmartError)

+
+
+
+
+

+

EventClient(:SmartComponent*) throw(SmartError)

EventClient(:SmartComponent*, server:const string&, service:const string&, :EventHandler<E>&) throw(SmartError)
EventClient(:SmartComponent*, port:const string&, :WiringSlave*, :EventHandler<E>&) throw(SmartError)
~EventClient() throw() [virtual]

+

add(:WiringSlave*, port:const string&) : StatusCode throw()
remove() : StatusCode throw()

connect(server:const string&, service:const string&) : StatusCode throw()
disconnect() : StatusCode throw()

get(identifier:const EventId, event:E&) : StatusCode throw()
try(identifier:const EventId) : StatusCode throw()
deactivate(identifier:const EventId) : StatusCode throw()
activate(mode:const EventMode, parameter:const P&, identifier:EventId&) : StatusCode throw()

blocking(flag:const bool) : StatusCode throw()

+
+

+
+

+

+
+
+
+
+

getNext(identifier:const EventId, event:E&) : StatusCode throw()+
getWait(identifier:const EventId, event:E&) : StatusCode throw()

Figure 5.42: The class diagrams of the event pattern.
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activation E. The server part additionally requires the state description S which is the basis for testing
the event predicate. The event predicate is checked at the server each time a new state description
is provided. An event can have multiple activations even from different clients each with their own
parameters for the event predicate. Each activation is checked individually and fires only according to
the individual activation parameters. An individual event can therefore be used to report on different
events. For example, an event which can check a value against a threshold can be activated multiple
times with customized thresholds to report on different levels reached.

stateless with state
single Fire once if a specific state is true. Fire once as soon as a specific state change is performed.

use case Fire when the robot is inside a specific re-
gion. The event also fires with the next test
if the robot is already inside the region.

Fire when the robot performs a specific state change, for
example, by entering a specific region. The event fires
only if the correct state change occurred between two
tests.

continuous Fire as long as a specific state is true. Fire with every state change.

use case Fire as long as the robot is inside a specific
region and report the current position of the
robot with every firing.

Fire each time a state change occurs, for example, by en-
tering or leaving a specific region but don’t fire if nothing
changes.

Table 5.30: The various event modi with use cases.

Each activation can be individually set to either single or continuous mode. In single mode, it is
the event pattern that makes sure that an activation fires only once irrespective of the results of the
event predicate at further tests. The event predicate additionally allows modifications of the activation
parameters which is useful to implement a state based event by memorizing states in the parameter
object. Table 5.30 summarizes the resulting event behaviors.

The Client Side The event activation is shown in table 5.31. It expects the event mode and the
parameters for the server side event predicate and returns a unique activation identifier. The event
mode is defined separately for every activation. The identifier is further used for referencing, stays
valid till deactivation and should not be used in concurrent blocking method calls. Since a blocking
method consumes an event, only one call returns the firing activation and the others return lost.

activate Activate an event with the provided parameters in either single or continuous mode.

ok Event is activated and a valid identifier is returned.
disconnected Activation not possible since not connected to a server. No valid identifier returned.
communication error Communication problems, event not activated and no valid identifier returned.
error Something went completely wrong, event not activated and no valid identifier returned.

Table 5.31: Event activation with individual event parameters and individual event mode.

Deactivation of an event is summarized in table 5.32. An event must always be deactivated explic-
itly and is only deactivated automatically with a disconnect. A disconnect deactivates all events since
activations are related to the service provider at which the activation was performed and therefore get
invalid with a disconnect. The client provides both a member function based interface and a handler
based interface.
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deactivate Deactivate the event with the specified identifier.

ok Everything is ok and event is deactivated. The identifier is not valid anymore.
wrong identifier There is no activation available with this identifier (still connected to service provider).
communication error Communication problems, deactivation not properly completed.
error Something went completely wrong, deactivation not properly completed.

Table 5.32: Deactivation of an event.

try Solely check the state of the event.

single mode
ok Event fired already, event is still available and can be consumed by calling get or getWait.
active Event has not yet fired.
passive Event fired already and event was already consumed.
wrong identifier No activation available with this identifier.

continuous mode
ok Unconsumed event is available. Since events are overwritten this means that at least one new

event has been received since the last event consumption.
active Currently there is no unconsumed event available.
wrong identifier (see above)

Table 5.33: Check whether an event activation fired already.

get Non-blocking call to consume an event.

single mode
ok Event fired already but event has not yet been consumed. Thus, event is consumed and re-

turned. Only the ok status indicates that a valid event is returned.
active Event has not yet fired.
passive Event fired and event got consumed already.
wrong identifier No activation available with this identifier.

continuous mode
ok Unconsumed event is available and event is consumed and returned. Due to the overwriting

behavior, only the latest firing of the event is available.
active There is no unconsumed event available.
wrong identifier (see above)

Table 5.34: Non-blocking call to consume an event.
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getWait Return immediately in case of an unconsumed event and otherwise wait till the denoted acti-
vation fires again.

single mode Since an event in single mode fires only once, return immediately if the event got consumed
already. Also return immediately if the event fired already but the event has not yet been
consumed. Otherwise wait till the event fires.

ok Unconsumed event is either already available or got available while waiting. Event is con-
sumed and returned. Only the ok status indicates that a valid event is returned.

wrong identifier No activation available with this identifier.
passive Event fired and got consumed already. Return immediately since event cannot fire again in

single mode.
cancelled Event has not yet fired and blocking is already not allowed at the time of method invocation

or waiting for the event to fire has been aborted since blocking is not allowed anymore.
lost The event fired while waiting but a concurrent call with the same activation identifier con-

sumed the event.
not activated Got deactivated while waiting. Thus, identifier is not valid any longer.
disconnected Client got disconnected while waiting. Thus, identifier is not valid any longer.

continuous mode Returns immediately if an unconsumed event is available. Otherwise, wait till the event fires
again. Due to the overwriting behavior, only the latest firing of the event can be available as
unconsumed event.

ok (see above)
wrong identifier (see above)
cancelled (see above)
lost (see above)
not activated (see above)
disconnected (see above)

Table 5.35: Wait for an event activation to fire respectively consume already fired events.
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getNext Blocking call which waits for the next arriving event to make sure that only events arriving
after entering this member function are considered. Event is consumed and events received
before calling this member function are ignored.

single mode In single mode one misses the event if it fired before entering this member function.
ok Event fired while waiting and event is consumed and returned. Only the ok status indicates

that a valid event is returned.
wrong identifier (see above)
passive Event fired prior to calling this member function. Independently of whether the event is al-

ready consumed or not, there can be no next firing. Thus, return immediately without a valid
event. Of course, an unconsumed event can still be consumed by calling get or getWait.

cancelled (see above)
lost (see above)
not activated (see above)
disconnected (see above)
continuous mode Makes sure that only firings after entering this member function are considered.
ok Event fired while waiting and event is consumed and returned. Only the ok status indicates

that a valid event is returned.
wrong identifier (see above)
cancelled Blocking is already not allowed at the time of method invocation or waiting for the event to

fire the next time has been aborted since blocking is not allowed anymore.
lost The event fired while waiting but a concurrent call with the same activation identifier con-

sumed the event.
not activated (see above)
disconnected (see above)

Table 5.36: Wait until an event activation fires after invoking this member function.

The member function based interface of the client part is summarized in tables 5.33, 5.34, 5.35
and 5.36. These member functions allow to check whether an event already fired and provide blocking
and non-blocking member functions to get an unconsumed event or to wait till the event fires or till it
fires again. Their behavior differs with respect to the event mode. For example, waiting for an event
to fire again makes no sense in single mode and thus, the corresponding methods do not block.
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Figure 5.43: The client side behavior of an event activation.

Figure 5.43 illustrates the overall behavior of the client side. In single mode, the state of the event
activation is active if the activation has not yet fired and it is ok if the activation has already fired but
has not yet been consumed. Consuming a fired activation performs a state change from ok to passive.
The try member function only checks the state of the activation and always returns immediately with
the appropriate status code and never consumes a fired activation. The get member function behaves
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like the try member function but consumes a fired activation in case there is an unconsumed one
available. Both, the getWait and the getNext member function only block when called in the active
state. The getWait member function returns the unconsumed event when called in the ok state whereas
the getNext member function indicates that the firing of the activation has been missed. Concurrent
calls to getWait and getNext with the same activation identifier are all released with a firing activation,
but only one call consumes the fired activation and returns ok and the others return appropriate status
codes.

The continuous mode works similar. The active state indicates that there is no unconsumed event
available and ok that there is one available. An unconsumed event can be consumed either by the get
or the getWait method. The latter does not block in case it is called in the ok state whereas getNext
always waits for the next firing. Consuming a fired activation switches from the ok to the active state
and calls to getWait and getNext block again. An activation that fires multiple times in the ok state
only holds the latest firing and event firings not yet consumed get overwritten, Again, any kinds of
concurrent calls to get, getWait and getNext with the same activation identifier are sorted out without
leaving a blocking call behind but only one invocation consumes the event.

:Event Client :Event Client

blocking until event
is cancelled, gets
deactivated or gets
disconnected

User:Task User:Task

fired
activation is
consumed

event
activation
fires

event
activation
fires

fired
activation is
consumed

activate(single, ...)

ok

try()

active

getNext()
passive

activate(single, ...)

ok

try()

active

try()

ok

get()

ok

try()
passive

get()
passive

deactivate()
ok

try()
wrong identifier

getWait()

ok

try()

deactivate()

passive

ok

pattern internaluser visible user visible pattern internal

Figure 5.44: Sequence diagram of user interface of client side with single mode activation.

Storing only the latest firing of an activation in continuous mode avoids boundless growing buffers.
The users have to either use the handler based interface if no firing can be missed in continuous mode
or to simply specify the returned event objects in such a way that they contain states instead of state
transitions. Then the latest event contains all necessary information irrespective of previous firings.
Figures 5.44 and 5.45 show sequence diagrams to further detail the client side behavior.
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Figure 5.45: Sequence diagram of user interface of client side with single and with continuous mode
activation.

The handler based interface is particularly useful if one wants to implement a central dispatcher or
if the pattern is used to asynchronously report events and one does not want to wait for the next firing
of the event. Once a handler is provided at the client side, every incoming event is forwarded to the
handler. Individual activations can always be distinguished by the unique activation identifier which
is also forwarded to the handler. The Queue Event Handler is a decorator for the client side handler
to convert the handler into an active object where the handleEvent member function is executed by a
separate thread.

The Server Side The server part requires a handler derived from the abstract event test handler
to implement the event predicate in its test member function. The event predicate checks the event
condition based on the activation parameters P and the current state S. The state S is provided by the
user by calling the put member function shown in table 5.37. Returning true from the test member
function causes the tested activation to fire if that is compatible to the event mode. The event object
E can be set inside the event predicate and normally grabs a snapshot of all relevant information to
exactly describe the circumstances which caused the event to fire. In case the event fires, the event
object E is transmitted to the appropriate client. The test member function can furthermore change the
activation parameters P to save information perhaps needed with the next predicate evaluation. For
example, one can implement a state automaton with the state stored in the activation parameters as
illustrated in the example in the next paragraph.

The operating sequence of the server side of the event pattern is summarized in figure 5.46. The
server calls the event predicate separately for every activation from within the put member function
as soon as a to be checked state description S is provided.
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put Initiate testing the event conditions for the activations.

ok Everything is ok and all event activations successfully checked with the new state.
communication error Communication problems with at least one of the clients that should have been notified of a

firing event activation.
error Something went completely wrong, see communication error.

Table 5.37: Providing a new and to be tested state to the event server.

:EventTestHandler:EventServerUser:Task

P11

P12

− any number of activations per client with individual parameters P i

− single or continuous mode selectable with every activation

any number of
clients per server

P21

P22
Ei

fire if event predicate
returns true unless
activation i is in single
mode and fired already

. . .

put(S)

. . .

. . .

test() with P , S

for every event activation i

i
Client 1

Client 2

Server
P
E

E
S

P

P
E

Figure 5.46: The operating sequence of the server side of the event pattern. Each activation provides
its individual parameters ! � which are then checked at the server side with every new state � .

Example Figure 5.47 shows an example of the implementation of a state based event with two
continuous activations. The activation parameters provide an individual threshold and a state flag that
is initialized to unknown. This makes sure that the first call to the event predicate always reports the
current state to the client. The event predicate operates the state automaton with the state stored in
the activation parameters and returns true to fire the event only with the state transitions 1, 2, 5 and
6. The state stored in the activation parameters allows individual states for every activation with an
automaton provided by the event predicate.
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Figure 5.47: Example of handling continuous activations of an event with state at server side.
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5.5.2.6 The Wiring Pattern

The wiring pattern supports dynamic wiring of services from outside a component by exposing service
requestors as ports. The user interface of the wiring pattern is summarized in the class diagrams in
figure 5.48.

WiringMaster(:SmartComponent*) throw(SmartError)
~WiringMaster() throw() [virtual]

+
+

connect(slavecmpt:const string&, slaveprt:const string&, servercmpt:const string&, serversvc:const string&) : StatusCode throw()
disconnect(slavecmpt:const string&, slaveprt:const string&) : StatusCode throw()

+
+

+ blocking(flag:const bool) : StatusCode throw()

Wiring Master

WiringSlave(:SmartComponent*) throw(SmartError)
~WiringSlave() throw() [virtual]

+
+

Wiring Slave

Figure 5.48: The class diagrams of the wiring pattern.

The wiring pattern is different to the other communication patterns in not requiring communi-
cation objects. Furthermore, the wiring slave does not possess user callable member functions and
operates transparently for the user without requiring user interactions. The connect/disconnect mem-
ber functions of the wiring master shown in tables 5.38 and 5.39 must not be confused with the
conforming member functions of the service requestors of the other patterns. The connect member
function does not establish a connection from the wiring master to the wiring slave but connects a
port with a service provider. A wiring master can wire arbitrary ports of arbitrary components without
being explicitly connected to a wiring slave before issuing a wiring command. The status codes of
the connect/disconnect member functions distinguish three different levels. The unknown component
status code is related to connecting to the wiring slave and is returned if the wiring master is unable to
connect itself to the slave component because that component either is unknown or does not possess
a wiring slave. Unknown port is related to the slave component and is returned if the wiring master
was able to connect to the slave component but no such port is known there. The other status codes
are related to the service provider to which the port is to be connected to.

The integration of the wiring pattern into a component is illustrated in figure 5.49. Applying
the wiring pattern only requires to instantiate the wiring classes. A component can have at most
one wiring slave. Service requestors can themselves register at the component central wiring slave
using their add/remove member functions. Independently of being exposed as port, one can still use
the connect/disconnect member functions of the service requestors to change wirings. The finally
effective wiring is solely determined by the order of the calls. A wiring master can of course also be
used to configure the ports of its component.

5.5.3 The Communication Objects

Communication objects represent the commonly agreed data structures that are exchanged between
components via the communication patterns. Component builders normally reuse communication
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connect Blocking member function to connect port slaveport of component slavecmpt with service
serversvc of component servercmpt.

ok Everything is ok and the requested connection has been established successfully. An old
connection is first removed before a new connection is established.

cancelled Blocking is not allowed or is not allowed anymore and therefore blocking call is aborted. The
port of the slave component can now be either unchanged, disconnected or properly connected
to the specified service provider.

unknown component The addressed slave component is either not known or does not provide a wiring service. The
requested connection cannot be established.

unknown port The specified port name is not known at the slave component. The requested connection
cannot be etablished.

service unavailable The slave component cannot connect to the specified service of the specified server since the
server and/or the service to be connected to from the slave component is not available.

service incompatible The service behind the specified port is not compatible with the service to be connected to.
Requested connection cannot be established.

disconnected The addressed wiring slave got destroyed while wiring was in progress.
communication error Communication problems either while connecting to the slave or at the slave component while

it tried to establish the requested connection to the requested service provider. The port of the
slave component now can either be unchanged, disconnected or already properly connected to
the specified service provider.

error Something went completely wrong. See communication error.

Table 5.38: Connect a port to a service provider.

disconnect Blocking member function to disconnect port slaveport of component slavecmpt from service
provider.

ok Everything is ok and the port is disconnected.
cancelled Blocking is not allowed or is not allowed anymore and therefore blocking call is aborted. The

port of the slave component now can either be unchanged or disconnected.
unknown component (see above), requested disconnect not performed.
unknown port (see above), requested disconnect not performed.
disconnected (see above), port now can either be unchanged or disconnected.
communication error (see above), port now can either be unchanged or disconnected.
error (see above), port now can either be unchanged or disconnected.

Table 5.39: Disconnect a port from its service provider.

objects as often as possible to minimize the number of different representations. Therefore, even
component builders normally only add a small number of new objects to the pool of already available
communication objects. Reusing communication objects reduces the effort of applying communica-
tion patterns to binding and instantiating templates.

It is important to recognize that communication objects are regular objects decorated with only
three additional member functions which implement the framework interface. Adding the interface
member functions extends any object to a communication object which then can be used with the
communication patterns. The additional interface consists of a name, a get and a set member func-
tion. The name member function returns a name to identify the communication object type. It has to
be unique within the namespace of communication objects. The get and set member functions imple-
ment the marshalling of the content to be transmitted. Marshalling is the process of gathering data
from eventually non-contiguous sources in computer storage and converting the data into a platform
independent and contiguous representation that can be transmitted across computer architectures and
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Figure 5.49: Applying the wiring pattern in components.
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Figure 5.50: Communication objects and marshalling. The dotted stripline separates the framework
internal level from the user visible part and is labeled with A in all figures from now on.

Figure 5.50 illustrates the principle interaction of a communication pattern with a communication
object. Communication patterns always hold their own communication object instances, either by
copying or by a life cycle management for references based on reference counters. The underlying
communication layer never gets in touch with communication objects besides the interface member
functions of the communication objects provided as framework interface. The communication layer
therefore only sees marshalled representations.

Marshalling can be implemented in many different ways and is needed anyway and independently
of the underlying communication mechanism. All full-fledged communication systems provide mar-
shalling mechanisms which however are almost never interoperable. Further abstraction of the mar-
shalling mechanism is by purpose not considered since wrapping then would introduce additional
overhead on top of an already resource intensive process. Instead, the marshalling mechanism inside
the communication objects is exposed to the component builder via the get and the set member func-
tions of the communication objects. Those member functions are however the only place where one
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gets in touch with aspects of the underlying communication and they are only relevant to component
builders who introduce new communication object types.

Asking the component builder to implement the get and the set member functions instead of
generating them automatically also has significant advantages. One is completely free to use any
mechanism which provides a representation which can be transmitted transparently across different
operating systems and host architectures. For example, the get and set member functions can also deal
with data structures stored in dynamic memory. The get method extracts the relevant content and the
set method rebuilds the structure in dynamic memory. That is possible because the semantics of the
communication patterns always is to transfer communication objects by value. Therefore, pointers
inside communication objects are only a matter of memory organization and are not expected to
stay valid across component boundaries. Furthermore, one can also transmit selected data structures
and rebuild alternative representations locally instead of always transmitting the whole content of a
communication object. For example, with a laser range scan, one can solely transmit the polar scan
and a pose to indicate where that scan was taken instead of including the cartesian scan. It is now up
to the communication object to internally convert the polar scan into a cartesian scan upon request.

The state-of-the-art implementation of the proposed approach uses CORBA as communication
mechanism and therefore naturally uses the CORBA IDL [28] to describe the format of the data struc-
tures that are to be transmitted. It is important to notice that the IDL is only used to benefit from
the automatically generated marshalling operators. The CORBA IDL compiler overloads the <<= and
>>= operators for type safe conversions between the IDL described data type used inside a communi-
cation object and a CORBA::Any type transmitted via the communication layer. The implementation
of the get and set member functions of the CORBA based version simply consists of applying the <<=
and >>= operators to perform marshalling.

xS_T.cc
xS_T.hh
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xS.cc
xS.hh
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server part
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xC.hh
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library header files
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object.hh object.ccobject.idl

au
to

m
at

ic
al

ly
ge

ne
ra

te
d 

by
co

m
pi

le
r

ob
je

ct
a 

ne
w

 c
om

m
un

ic
at

io
n

bu
ild

er
 w

he
n 

in
tr

od
uc

in
g

pr
ov

id
ed

 b
y 

co
m

po
ne

nt
co

m
po

ne
nt

 b
ui

l−
de

r 
as

 u
se

r 
of

al
re

ad
y 

av
ai

la
bl

e
co

m
m

un
ic

at
io

n
ob

je
ct

s

Figure 5.51: Marshalling with the CORBA based implementation. The IDL does not describe the
object but only the data structures to be transmitted.

The CORBA IDL is not used to describe the overall communication object since this would restrict
the data types of the member functions of the communication objects to the CORBA types. These
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member functions and their data types are completely independent of the modelling capabilities of the
underlying communication mechanism. Communication objects are the place where the adjustment
of communicated data structures to those used by the user takes place. This of course does not mean
that one cannot completely describe a communication object by the CORBA IDL if one accepts the
restrictions then imposed on the data types of the member functions.

The process of implementing a communication object using the CORBA IDL is illustrated in
figure 5.51. A regular object is decorated by the framework interface and data structures relevant
for transmission are described by the IDL. The communication object is then compiled into a library
which has to be linked to a component if that communication object is being used.

Implementing the proposed approach on top of another communication mechanism instead of
using CORBA might require more effort when implementing the get and set member functions. In
principle, however, there is no difference and one could even use libraries which provide CORBA
compatible marshalling functions without having to use an IDL compiler.

5.5.4 Example of Usage

The following example illustrates the usage of the communication patterns and illustrates how easily
they can be applied. The example uses the CORBA based implementation. As component builder,
one normally first checks the availability of standardized and reusable communication objects be-
fore defining a component interface. Figure 5.52 shows parts of the hierarchy of transmittable data
structures used inside standardized communication objects for robotic applications. Hierarchically
composing those data structures avoids introducing varying representations of one and the same con-
tent. Figure 5.53 shows the implementation of a simple communication object containing a time
stamp. The member functions implement the mandatory framework interface and an arbitrary user
interface. Figure 5.54 shows the basic structure of the more complex communication object for laser
scans taken by a laser range finder mounted horizontally on a moving platform.

smartTimeStamp.idl smartBasePosition.idl smartBaseVelocity.idl

smartLaserScan.idl smartBaseState.idl

smartMobileLaserScan.idl

1..1 1..1

1..1

1..1

...

1..1

1..1

Figure 5.52: Class diagram of parts of the basic data structures used inside communication objects
for robotics.

The following two example components show the usage of the query pattern. The components are
kept as simple as possible and require respective provide only one service besides the wiring service.
The component shown on the left side of figure 5.55 is named first and contains the client part of
the query pattern. The query pattern is bound by a void object for invoking a request without further
parameters and by a communication object for laser scans containing the answer. The service re-
questor is visible as port named laserPort. The user activities are performed by a separate thread. The
main thread operates the run member function of the component management to keep the SMART-
SOFT framework alive. The service requestor of component first can be wired from outside using
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struct TimeStamp {

unsigned long sec;

unsigned long usec;

module SmartIDL {

}

}

smartTimeStamp.idl

no CORBA types at the user interface

#include "smartTimeStampC.hh"

class CommTimeStamp {

protected:

SmartIDL::TimeStamp timeStamp;

public:

CommTimeStamp();

virtual ~CommTimeStamp();

void get(CORBA::Any &a) const {

a <<= timeStamp;

}

void set(const CORBA::Any &a) {

SmartIDL::TimeStamp *t = 0;

if (a >>= t) timeStamp = *t;

}

}

static inline string name() {

return "Smart::CommTimeStamp";

}

void set(unsigned long seconds,unsigned long microseconds) {

timeStamp.sec = seconds + microseconds / 1000000;

timeStamp.usec = microseconds % 1000000;

}

t.tv_sec = timeStamp.sec; t.tv_usec = timeStamp.usec;

void get(timeval &t) const {

...

};

...
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// now define user access member functions

Figure 5.53: Implementation of the communication object for a time stamp as example.

the wiring service. By calling connect(first,laserPort,second,laser), it gets connected to the service
provider named laser of component second.

The component which provides the laser scan service is named second and is shown on the right
side of figure 5.55. The LaserQueryHandler implements the handler for incoming requests. The
handler instance is converted into an active object by the QueueQueryServerHandler decorator. The
received requests are stored in a queue which requires only a very small amount of time in the frame-
work executed part of the handler. The thread of the active handler then dequeues one entry after the
other and executes the user provided handle member function for every dequeued entry independently
of the framework activity.

5.5.5 Summary of the Component Builder View on the Framework

Implementing a new component normally starts with specifying the interface of the component. The
interface consists of both provided and needed services. The services to be provided have to be spec-
ified with respect to the communication mode and the used communication objects. Normally one
reuses communication objects as often as possible to only have one object type per basic entity like
laser range scans et cetera. Introducing new communication objects in case that there are no suitable
ones available requires only small efforts. Once the required and the provided services are identified
and are specified completely including the communication modes and the communication objects,
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no CORBA types at the user interface

#include "commTimeStamp.hh"

#include "commBaseState.hh"

#include "smartMobileLaserScanC.hh"

class CommMobileLaserScan {

protected:

SmartIDL::MobileLaserScan laserScan;

public:

CommMobileLaserScan();

virtual ~CommMobileLaserScan();

void get(CORBA::Any &a) const {

a <<= laserScan;

}

void set(const CORBA::Any &a) {

SmartIDL::MobileLaserScan *s = 0;

if (a >>= s) laserScan = *s;

}

static inline string name() {

return "Smart::CommMobileLaserScan";

}

// now define user access member functions
us

er
 a

cc
es

s 
m

et
ho

ds
tr

an
sm

itt
ed

#include "smartBaseState.idl"

#include "smartLaserScan.idl"

struct MobileLaserScan {

module SmartIDL {

BaseState baseState;

LaserScan laserScan;

double x;

double y;

double z;

double a;

}

}

smartMobileLaserScan.idl

scan point iterators based on STL

cartesian scan in the coordinate system of the scanner

scan point iterators based on STL

polar scan

cartesian scan in the coordinate system of the robot
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...
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Figure 5.54: The communication object for a laser scan of a laser range finder that is mounted
horizontally on a moving platform.

one already possesses the complete description of the external interface of the component. Due to the
communication patterns, this includes the semantics of the available methods and immediately opens
up how to use the interface. In case one only wants to provide an alternative implementation of an
already available component, one does not even have to think about the interface but can simply reuse
the already available services. One only has to reimplement the handlers of the services to match the
new internals of the new component. Implementation of external interfaces is reduced to binding and
instantiating templates. Access to remote services consists of calling predefined member functions
where one does not have to care about concurrency neither inside the component nor with respect
to the service provider outside the component. Providing a service only requires to implement the
appropriate handlers of the used communication patterns. The handlers can directly provide the re-
quired calculations, can be made active or can forward requests to other threads implementing various
processing models. The component builder can focus on the internals of its component. Aspects of
other components like their location or how they access the newly provided services are completely
removed from the responsibility of the component builder as well as aspects related to the coordina-
tion of accessing services. One does not have to care about synchronization neither when accessing
services of other components nor within the own component when the own services are accessed con-
currently. The component builder however still gets the guarantee that afterwards the new component
fits into the already available ones like a piece of a puzzle. The key are the predefined communication
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#include "smartSoft.hh"

#include "commVoid.hh"

#include "commMobileLaserScan.hh"

int UserThread::svc(void) {

CommVoid request1, request2;

CHS::QueryId id1, id2;

...

status = laserQueryClient−>request(request2,id2);

...

status = laserQueryClient−>receiveWait(id2,answer2);

status = laserQueryClient−>receiveWait(id1,answer1);

...

}

...

int main(int argc,char *argv[]) {

...

CHS::SmartComponent component("first",argc,argv);

CHS::WiringSlave wiring(component);

UserThread user;

(component,"laserPort",wiring);

user.open();

component.run()

...

}

CommMobileLaserScan answer1, answer2;

class UserThread : public CHS::SmartTask {

public:

UserThread() {};

~UserThread();

int svc(void);

};

// separate thread for user activity

status = laserQueryClient−>request(request1,id1);

laserQueryClient = new CHS::QueryClient<CommVoid,CommMobileLaser>

CHS::QueryClient<CommVoid,CommMobileLaserScan> *laserQueryClient;

#include "smartSoft.hh"

#include "commVoid.hh"

#include "commMobileLaserScan.hh"

class LaserQueryHandler

public:

: public CHS::QueryServerHandler<CommVoid,CommMobileLaserScan> {

void handleQuery(

// this handler is executed with every incoming query

CHS::QueryServer<CommVoid,CommMobileLaserScan>& server,

};

int main(int argc,char *argv[])

{

...

{

CommMobileLaserScan a;

// request r is empty in this example, now calculate an answer

server.answer(id,a);

}

CHS::SmartComponent component("second",argc,argv);

// the component management is mandatory in all components

// the following implements a query service for laser scans

LaserQueryHandler laserHandler;

CHS::QueryServer<CommVoid,CommMobileLaserScan>

...

laserServant(component,"laser",activeLaserHandler);

}

component.run();

// the following call operates the framework by the main thread

activeLaserHandler(laserHandler);

CHS::QueueQueryServerHandler<CommVoid,CommMobileLaserScan>

// with an active handler

const CHS::QueryId id,

const CommVoid& r) throw()

Figure 5.55: Two example components named first and second.

patterns that provide interface methods with fixed semantics and which move arbitrary user definable
methods to the communication objects where their scope is restricted to the internals of a component.

5.6 The Framework Builder View on the Approach

The previous section focused on the component builder and described in detail the user interface and
the behavior of the communication patterns. This section goes into the details of the internally used
mechanisms to achieve the desired behavior of the user interface. It is important to describe not only
the user interface but also the protocols and structures behind the user interfaces. Whereas the user
interface is mainly important to the component builder, the protocols and structures are relevant to the
framework builder. At first glance, the internal mechanisms are not important once the user interface
is defined and protocols are often considered as being definable arbitrarily without influencing the
user interface. However, slight variations often have significant and non-obvious consequences on
the overall behavior and performance. For example, asynchronous user interfaces can become ob-
solete on top of a synchronous communication mechanism. An unsuited protocol can easily cause a
request invocation to return only after the request is fully processed. Therefore, this section presents



120 CHAPTER 5. THE SMARTSOFT FRAMEWORK

the pattern internal structures and protocols. These are independent of any specific communication
approach and they mediate between the characteristics of the user interface and the characteristics
of the communication systems. Details of the interaction of the communication patterns with the
underlying communication mechanism are deepened with respect to representative classes of com-
munication systems that already cover a large family of communication systems. The state-of-the-art
implementation uses CORBA as communication mechanism. Further implementations on top of TCP
sockets, a message based system and synchronous remote procedure calls underpin the universality
and portability of the approach.

5.6.1 The Role of the Communication Patterns

The communication patterns themselves do not perform the actual communication but mediate be-
tween the user interface and the communication mechanism as illustrated in figure 5.56. The com-
munication patterns provide the glue logic which coordinates everything on top of a communication
mechanism to enforce the required behavior of the user interface. Communication patterns provide a
standardized semantics and behavior independently of the underlying communication mechanism and
make sure that the characteristics of the used communication mechanism do not influence the behavior
of the user interface. An important demand on the communication patterns is to decouple the service
requestor from its service provider including an asynchronous operation of both sides. That is a non-
trivial task since not all communication mechanisms provide all of the required features. For example,
implementing an asynchronous user interface on top of a synchronous communication mechanism re-
quires carefully chosen protocols and structures. Otherwise, the asynchronous user interface behaves
like a synchronous one and becomes obsolete due to the introduced dependencies with respect to
execution orders. The challenge is to provide both in parallel, synchronous and asynchronous user
interfaces even if only synchronous two-way or asynchronous one-way interactions are supported by
the communication system. Both, the implementation of a synchronous two-way user interface on top
of asynchronous one-way interactions as well as the implementation of an asynchronous user interface
on top of synchronous interactions requires additional glue logic respectively well chosen protocols
to achieve the expected user interface semantics.

The only part where the underlying communication mechanism is visible to the component builder
is at the framework interface of the communication objects. As already described in section 5.5.3, the
communication objects provide framework accessible methods to extract the content of an object for
transmission. The way of describing those data structures is normally directly related to the underlying
communication mechanism if one uses the marshalling functions of the communication mechanism.

5.6.2 The Interaction Patterns

Communication patterns provide different access modes. The access modes provided at the service
requestor and those at the service provider can be used in any combination. From the user level
perspective, these combinations of access modes look like different interaction patterns between both
parts of a communication pattern. The communication patterns have to implement the interaction
patterns independently of the features of the underlying communication system.

The interaction patterns are the core of the communication patterns. They each consist of a service
invoking and a service providing part named client and server. Both parts of a communication pattern,
the service requestor and the service provider, can invoke operations on each other and can thus
contain both clients and servers of interaction patterns. For example, the client part of the interaction
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Figure 5.56: The communication patterns provide the glue logic between the user interface and
the underlying communication mechanism within components. The dotted stripline labeled with C
furtheron designates the framework internal interface between the actual communication mechanism
and the communication system abstraction. B denotes the framework internal interface between the
communication system abstraction and the communication patterns. The interface that separates the
framework internal level from the user visible part is again labeled with A.

pattern beneath the put method of the server side user interface of the push communication patterns is
located inside the service provider of the push communication pattern.

In principle, one can provide all user access modes with every communication pattern resulting in
interaction patterns for all reasonable combinations of client and server side characteristics. However,
as already summarized and outlined in table 5.2 in section 5.4.4, not all combinations of access modes
and communication patterns are motivated and supported by use cases. Thus, not all possible interac-
tion patterns are currently required by the communication patterns. Nevertheless, the semantics of the
user interfaces of the communication patterns and the access modes assignable to the communication
patterns are independent of the underlying communication system as soon as all possible interaction
patterns are implementable on top of the selected communication system.

5.6.2.1 The Client Part Characteristics

The characteristics of the client part of the interaction patterns are shown in figure 5.57. These char-
acteristics are motivated by the access modes of the communication patterns and can be characterized
with respect to the direction and the invocation mode. The client part interfaces are always based on
member function calls. The client part interfaces are expected to be thread-safe, that is no further user
level synchronization is needed with concurrent access.

The direction mode can be either one-way or two-way and determines the transmission direction
of arguments. In arguments are transmitted from the client to the server and can be modified there but
without affecting the client side. An out argument cannot provide an initial value to the server but it is
returned to the client. An inout argument provides an initial value to the server and all modifications
are returned to the client. In one-way mode, interactions can have in arguments only since there is no
back channel and arguments can be transmitted solely from the client to the server. In two-way mode,
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Figure 5.57: Overview on the characteristics of the client part of the interaction patterns.

interactions can have all three types of arguments since a two-way interaction provides the required
back channel from the server to the client.

The invocation mode can be either synchronous or asynchronous. A synchronous invocation
blocks and returns after the server side processing is finished according to a processed policy whereas
an asynchronous invocation returns before. The invocation mode solely characterizes the client side
behavior and does not characterize the communication mechanism used between the client and the
server. Asynchronous invocations allow to benefit from concurrent calculations and thus normally
result in better reactivity and shorter answer times if calculations can be invoked in parallel.

A client part synchronous one-way characteristic (A) accepts in arguments only, blocks and returns
either after the server side processing is finished or with an error. A feedback channel is still needed
to return the processed acknowledgment for the synchronous client side interface. However, it is just
empty and does not carry any arguments to be returned.

A client part synchronous two-way characteristic (B) is invoked with the in and inout arguments,
blocks and either returns with the inout and out arguments after the server part processing is completed
or with an error. The only difference to the synchronous one-way characteristic is that the feedback
message is not just empty. The feedback message again corresponds to a processed acknowledgment.

A client part asynchronous one-way characteristic (C) also transmits in arguments only but returns
before the server part processing is finished or even before it is started. Asynchronous one-way inter-
faces can be distinguished with respect to the level of guarantees they provide. The unreliable send
policy returns as soon as the message is delivered to the client part transportation layer and accepts
that messages can get lost. The next level is the reliable send policy that guarantees the delivery of
a message in case the recipient exists. Otherwise, no feedback is given on the whereabout of the
message. Even if no message gets lost, one cannot be sure that it is delivered successfully and that it
is going to be processed. The recipient might be in the process of destruction or might have disap-
peared after the message was sent and just before the message is tried to be delivered. Both policies
provide no acknowledgment and user level protocols have to take additional precautions to make sure
that communicating partners never hold wrong assumptions about the states of their opponents due to
messages that never reached their destination. In contrast, the delivered policy returns after the mes-
sage has been delivered to the server part but before it is processed there. However, being delivered
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guarantees that it is going to be processed and that the recipient cannot get destroyed as long as there
are pending requests. Thus, that policy provides an acknowledgment that the message arrived at the
server and is going to be processed for sure. The client part asynchronous one-way interface (C) is
always meant to implement the delivered policy.

A client part asynchronous two-way characteristic (D) splits the two-way interface into a request
and a response method. The request method provides the in and inout arguments and the response
method returns the deferred answer consisting of the inout and out arguments. The asynchronous
two-way characteristic follows a delivered policy with respect to the request and a processed policy
with respect to the response. Since the user decides on when to fetch responses, a buffer is needed to
store the answers meanwhile.

The characteristics (A) and (B) and the response method of (D) have to be abortable. Otherwise,
one would require the client part to always await the completion of the server part processing before
one could react to a changed situation to proceed in a different way. A missing facility to abort those
methods would often unnecessarily increase the response time.

In principle, one can emulate all client part characteristics on top of (D). (A) and (B) are emulated
by a wrapper that first executes the request method and then blocks by a suitable mechanism until
the response can be fetched by the response method. In case of (A), the content of the response is
just void and carries the acknowledgment that the server part processing is completed. (B) can also
directly emulate (A) by restricting the direction mode to in arguments only and a void back channel.
(C) is emulated by using the request method only. Depending on the implementation, however, one
might still have to call the response method to close the otherwise still open request. That would make
the emulation a bit more complicated since one has to call the not needed response method after the
arrival of the void response.

The client part of an interaction pattern can always be passive. Any activity is initiated from the
user level by performing a method call. An upcall from the communication system to the client part
never gets blocked since it never performs any further processing besides forwarding the acknowl-
edgment and besides forwarding the answer such that user level threads are released and such that
the answer can be picked up via the member function based interface. Both activities do not access
any resources whose availability depends on the upcalling thread. Even (B) and (D) are not critical
since in case of a successfully invoked request, the administrative structures to accept the response
from the communication system upcall are always available. Since each request expects one answer
only, there can be no overflow with respect to the administrative structures. In case the answer itself
requires too much memory space, it can just be discarded and the administrative structures allow to
inform the pending requests on the error without requiring the upcalling thread to wait until enough
memory space becomes available. To summarize, the upcall of the communication system never gets
blocked in a client part of an interaction pattern.

5.6.2.2 The Server Part Characteristics

The server part characteristics of the interaction patterns are shown in figure 5.58. The server part
can be categorized with respect to the initiation and the invocation mode. The initiation mode can be
either pattern or user and describes the responsibility for initiating the request processing. In pattern
mode, it is the interaction pattern that makes sure that every incoming request initiates its processing.
Thus, one has to consider server part processing models for the upcall to decouple several concurrent
requests or to separate the communication from the request processing as detailed in the following
section. In user mode, it is the user who invokes the processing of requests. Thus, the processing
models are not in the scope of the server anymore. However, a buffer is needed for incoming requests
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that are not yet fetched by the user.
The invocation mode can be either synchronous or asynchronous and specifies whether a request

has to be processed within a single call or is splitted into an invocation and a completion part. A syn-
chronous invocation has a single interface method only and interprets the completion of that method
as having processed the request. An asynchronous invocation is based on an invocation and a com-
pletion interface method. The invocation method provides the in arguments and in case of a two-way
interaction the in parts of the inout arguments but does not return any arguments. The completion
method has to be called from the user level to provide the out part of the modified inout arguments
and the out arguments that have to be returned to the server. Returning from the invocation method
to the server does not indicate that the request is already processed. The server considers a request
as being completed only after the completion method has been called. On completion, the server can
send back any designated arguments respectively a void argument. The completion method indicates
when a processed policy considers the processing as completed.

The advantage of the asynchronous invocation mode is the flexibility with respect to user level
processing models. For example, one can easily propagate a request through a pipeline of processing
steps and return the result from a thread that is completely different to the one that handled the invoca-
tion method. In contrast thereto, a synchronous invocation mode is much easier to implement by the
server since it does not require the glue logic to correctly assign provided responses to open requests.
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Figure 5.58: Overview on the characteristics of the server part of the interaction patterns.

The server part synchronous pattern characteristic (U) invokes the processing from the interaction
pattern and processes the request within a single upcall. A request is completed with returning from
the upcall. The server part synchronous user characteristic (W) implements a downcall from the user
level to get a request for processing. The actual processing is moved out of the scope of the server
and there is no back channel from the user level to the server. Thus, the characteristic (W) is unsuited
for interaction patterns that require a processed acknowledgment or expect arguments to be returned.
The characteristic (W) can be used only in combination with a client part asynchronous one-way
characteristic.

The server part asynchronous pattern characteristic (V) splits the request into a pattern invoked
upcall for the request and a user invoked downcall for the response. Of course, the completion method
can also be invoked from inside the invocation method since an asynchronous interface is expected
to be organized such that selflocks are impossible. The request is considered as being completed as
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soon as the completion method is called and independently of any subsequent activities even if these
are executed inside the invocation method. In case of one-way arguments, one has to check carefully
when to call the completion method since any subsequent activities are not considered as belonging to
the scope of the request processing. That behavior is desired with the communication patterns since
the user can already complete a request with respect to the client even if there are still some server part
housekeeping activities to be executed afterwards. However, some asynchronous interfaces send back
an answer earliest after both the invocation method and the completion method returned to the server.
Finally, the server part asynchronous user characteristic (X) is different to (V) only with respect to the
invocation method.

In principle, one can emulate all server part characteristics on top of (V). (W) and (X) require the
emulation of the otherwise server provided buffer for incoming requests. The upcalling invocation
method of (V) is solely used to put incoming requests into that buffer from where the user can fetch
the requests by the emulated invocation method. In case of emulating (W), one still has to call the
completion method of (V) just to properly close the otherwise open request. Finally, (U) can be
emulated by making the synchronous upcall from inside the invocation method and by calling the
completion method after that upcall returns and just before returning to the server.

5.6.2.3 Resulting Combinations of Client/Server Characteristics

An overview on the interaction patterns resulting from all combinations of client and server part
characteristics is given in table 5.40. However, not all combinations result in reasonable interaction
patterns. The interaction patterns (C/V) and (C/X) are possible but not optimal since the server part
response method is not needed with a client part asynchronous one-way characteristic. The completion
method at the server still had to be called with void arguments to close the otherwise open request. The
interaction patterns (A/W), (B/W) and (D/W) are not possible since there is no completion method at
the server part. The completion method is needed to indicate the processed state as well as to return
the inout and out arguments. The (A/U) interaction pattern is the standard synchronous one-way
interaction where the client part returns after the server part processing was finished. The interaction
patterns (A/V) and (A/X) would require to call the completion method with void arguments after the
server part processing is completed. Since the client part characteristic (A) can easily be emulated
by (B) and since the server part characteristic (X) is not justified by reasonable use cases, both are
furtheron not considered separately anymore. Dropping the server part characteristic (X) and not
considering the client part characteristic (A) results in only six different interaction patterns on top
of which all reasonable combinations of user access modes of the communication patterns can be
implemented. Figure 5.59 shows the remaining interaction patterns.

The interaction patterns (B/U) and (B/V) represent the standard synchronous interactions that can
be used in either one-way or two-way mode. The client part returns after the server part processing
is completed. In case of (U) this corresponds to the return of the server part upcall and in case of
(V) to calling the completion method. The dotted lines correspond to a delivered policy with respect
to the request and mark the point of time after which the client part invocation has to be abortable.
That is in particular important to enable the client part to react before the currently running request
is completed since being forced to first await the completion could take far too much time with long
running calculations. The completion method of (V) has to be callable from inside the invocation
method.

The interaction patterns (C/U) and (C/W) represent the standard asynchronous one-way interac-
tion with either a pattern or a user invoked server part processing and a delivered policy. The client
part returns before the server part processing is completed or even before it is started but after the
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synchronous pattern asynchronous pattern synchronous user asynchronous user
U V W X

synchronous one-way ✓ ✓ — ✓

A impossible
synchronous two-way ✓ ✓ — ✓

B impossible
asynchronous one-way ✓ — ✓ —

C not optimal not optimal
asynchronous two-way ✓ ✓ — ✓

D impossible

client part characteristics server part characteristics

Table 5.40: Interaction patterns resulting from all combinations of client and server part character-
istics.

request has been delivered at the server part. Being delivered is tantamount to getting processed for
sure.

The interaction patterns (D/U) and (D/V) represent the standard asynchronous two-way interac-
tion. The client part invocation has to implement a delivered policy. The server part characteristics
(U) and (V) behave exactly like the one in the (B/U) and (B/V) interaction patterns. The client part
response methods block if they are called before the response is available and if they are allowed to
block. Thus, they have to be abortable.

5.6.3 The Server Part Processing Models

Basic demands on the interaction patterns comprise decoupling and reactivity. Concurrent requests
should not block each other and new requests should be accepted even while others are still processed.
Both properties are strongly related to the server part threading models. Appropriate threading mod-
els allow to accept further requests independently of processing other requests and thus avoid the
backpropagation of delays to clients as long as further threads are available. The achievable level of
decoupling is directly related to the used threading model.

The server part characteristics (W) and (X) store requests in a buffer until they are picked up by the
user level processing. As long as there is enough buffer capacity available inside the server, inserting
a request into the buffer does not fail and does not block shared resources. A limited buffer size is
sufficient as long as the user level processing model is on average able to pick up and process more
requests than arrive. The buffer then compensates for the peak load. Since the actual processing is
invoked from the user level, one can do without server part processing models. However, the situation
is completely different in case the buffer fills up. Blocking the thread that enqueues new requests
or filling up underlying buffers is acceptable unless these are shared resources. Blocking shared
resources easily causes deadlocks if the blocked resources are just needed to get through that request
that resolves the overload condition. That not only applies to the thread that forwards the request to
the buffer but also to shared communication resources.

In contrast thereto, the situation is completely different with the pattern initiation modes (U) and
(V) where the server is responsible for invoking the request processing. To avoid deadlocks, the
user level implementation of the service must not access any resources whose availability depends
on the borrowed thread. One can either rely on a server level threading model that already assigns
an appropriate and noncritical thread to the invocation method or one forwards the processing to
a user level threading model. The latter has the advantage that one is not restricted to the server
level threading models since not every communication system already provides the required threading
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Figure 5.59: The remaining interaction patterns.

policies.

Servers can provide different policies to assign threads to requests. For example, a server can
invoke a new thread with every request, can have one thread per client or can maintain a thread pool
of fixed size. All those models have drawbacks and have to be selected carefully with respect to the
application. The thread per request model is the only model where a server can handle any number of
concurrent requests. Since each server side upcall gets its own thread, its blocking does not prevent
another upcall from being processed. The overall behavior is the same as if the original thread was
migrated between the client and the server and followed its processing across all communication
model boundaries. Thus, each processing sequence that is free of deadlocks (including arbitrarily
nested calls) can be executed without having to worry about deadlocks introduced by the distribution.
The server behaves like having an unbounded thread pool at its disposal. Since that model can result
in a huge number of threads, it can easily reach the limit of a system. In contrast thereto, all threading
models that limit the number of concurrently spawn threads at the server can cause deadlocks on
an otherwise deadlock-free execution. The execution gets disrupted as soon as no more threads are
available and if only another thread would resolve the pending activities. The thread pool model
results in a deadlock if the maximum number of threads is not sufficient. The thread per client model
behaves like providing a thread pool of size one for each client. It serializes all requests from one
client and the single thread is not sufficient as soon as one request has to pass another request from
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the same client. That is the case if the server side request processing is blocked on a resource that gets
available only after another request from the same client got processed. The thread per client model
discriminates heavy load clients and the thread per server model is like handling all clients with a
thread pool of size one. Thus, the requests from all clients are serialized and a deadlock is introduced
as soon as the server side processing is blocked on a resource that gets available only after another
request from an arbitrary client got processed.
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Figure 5.60: The synchronous server part invocation mode (U) and different processing models.

Figure 5.60 illustrates the influence of different server part processing models on the interaction
patterns in case of a synchronous server part invocation mode (U). The invocation mode (U) declares
a request as being processed earliest after the upcall from the server to the user level returned to the
server. The side-effects of the user level processing on the server and on the interaction pattern are
directly related to the used threading model. Likewise are the user level activities restricted depending
on the other responsibilities of the thread that invokes the user level implementation. In principle, the
upcalling thread must not block on any resources whose availability depends on its own activity.

A server with a synchronous server part invocation mode (U) and a passive direct processing (M)
blocks the thread that invokes the user provided implementation as long as it takes to execute the user
provided implementation. This holds true independently of whether arguments have to be returned
or not since the upcall from the server returns only after the processing is completed. A synchronous
client part invocation returns earliest after ➁ that is after the server side upcall is completed. In contrast
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thereto, the client part invocation method of an asynchronous interface with a delivered policy always
returns latest after the processing is started as marked by ➀. Depending on the involved buffers, that
might even be before the processing is invoked. Even with one-way arguments only as it is the case
with the client part characteristic (A), the synchronous client part invocation cannot be used to directly
emulate a delivered policy.

A server with a synchronous server part invocation mode (U) can forward the request to a sepa-
rate handler. The synchronous server upcall is split into an invocation and a completion method as
illustrated by the processing models (N) and (O). The implementation of the upcall provides the glue
logic to correctly assign returned results to open requests. For example, the implementation of content
driven processing chains is much simplified by such an asynchronous interface.

In principle, with an active handler, the processing of requests is moved out of the scope of the
thread of the server upcall. An active handler separates the request processing from the server upcall.
Again, the kind of coupling between different requests of one handler is determined by the chosen
handler threading model. The active handler can implement any kind of threading model to assign
threads to unprocessed requests. Forwarding a request to an active handler is essential if the required
threading policy is not supported by the server. For example, one can order the requests according to
priorities or other user specified criteria. An active handler with a buffer can filter out all requests of
a particular client and can give them precedence over all other requests. If the handler uses a buffer
to store unprocessed requests, one even does not have to await the availability of a thread. As long as
there is enough space available in the buffer, one can already return after the request got stored in the
buffer and thus even before the processing of the request was started.

An active handler (O) on top of a synchronous invocation mode does not per se prevent the upcall-
ing thread of the server from being blocked since the synchronous invocation mode has to wait until
the active handler provides the results that have to be returned to the server with leaving the upcall
➁. Thus, an active handler is not suited to release the upcalling thread of the synchronous invocation
mode if a processed semantics is required and is also obsolete with two-way interactions. In both
cases, an active handler cannot decouple the request processing from the upcalling thread and in both
cases, there is no way to circumvent the threading policy of the server upcall. A synchronous client
part invocation always results in a processed policy and cannot emulate a delivered policy.

Generally, the upcalling thread is always occupied from ➀ to ➁. However, it is up to the active
handler when to call the completion method that allows the upcall to return to the server. Calling
the completion method as soon as possible reduces the blocking time of the server upcall. In case of
a synchronous client part invocation, the client part waiting time is reduced in the same order. The
client part waiting time then depends only on the point of time of returning from the server upcall.
However, only those parts of the handler that are placed before calling the completion method are
covered by a processed policy. Those parts placed afterwards are still executed but are not covered by
the processed policy. Thus, the active handler can achieve a delivered policy by calling the completion
method before doing anything else. That, however, is feasible only with one-way arguments since with
two-way arguments, one needs to provide the arguments that are to be returned.

An active handler decouples the server upcall only in case of one-way arguments since one can
already return from the upcall after having forwarded the request to the active handler. That, however,
requires that both holds true, no arguments have to be returned and a delivered policy is sufficient. The
blocking time is reduced to the amount of time needed to perform the forwarding. That is much less
time than it takes to process the request itself. Even a synchronous client part invocation then already
returns after ➂. A client part synchronous call then solely covers the forward of the request and the
processed semantics of the client part invocation represents a delivered semantics with respect to the
user level processing. That is correct since with an active handler, the processing of requests is moved
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out of the scope of the server. This has to be considered when interpreting acknowledgments, but it
allows to emulate an asynchronous client interface with a delivered policy even if only a synchronous
interaction with a processed policy is available.

Of course, one can do without an active handler. A server with a synchronous invocation mode
and a passive handler (N) completely executes the handler by the thread of the server upcall. The
completion method is invoked from the invocation method and thus even before the latter is completed.
This requires appropriate mechanisms to avoid selflocks and even in case of an asynchronous one-
way semantics, one can not return from the upcall before the processing is completed. The passive
handler behaves like the passive direct processing model with the advantage that one can switch to
an active handler if that becomes necessary without changing the implementation. A synchronous
client part invocation always returns earliest at ➁ independently of the point of time of calling the
completion method since the server side upcall can return only after the thread of the upcall is not
needed anymore to execute the handler. The upcalling thread is always occupied until the handler is
executed completely. Thus, a synchronous client part invocation always results in a processed policy
and cannot emulate a delivered policy.

To summarize, in case of a synchronous server invocation mode (U) with two-way arguments, the
upcalling thread does not return before the request was processed completely. That is independent of
using passive or active handlers since one has to await the end of the request processing before one
can return from the upcall. The same holds true in case of one-way arguments if one has to fulfill
a processed policy. Thus, one should make sure that the upcalling thread is not involved in other
activities so that it can be used without restrictions to perform the user level processing. An active
handler does not make any sense since then the upcalling thread simply gets suspended meanwhile
so that it anyhow is not able to perform other activities concurrently to the request processing. If one
uses a decoupled thread to perform the upcall, it is just wasted. With a synchronous server invocation
mode (U) and two-way arguments, one depends on the threading models of the server. Furthermore,
an asynchronous client interface cannot be emulated as long as one uses two-way arguments. With
two-way arguments and a synchronous server invocation mode, one needs a communication system
that already combines a client side asynchronous interface with a server side synchronous invocation.

In contrast thereto, the upcalling thread of a synchronous invocation mode (U) with one-way
arguments can return in case of achieving a delivered policy as soon as the request got forwarded to
the active handler. Thus, other activities of the upcalling thread are not blocked as long as the active
handler is able to accept further requests. Then, one can even share one thread by several servers
and the actual assignment of threads to requests is done by the active handlers and independently of
the threading models available at the server. The threading models of the server can nevertheless be
exploited by using a direct processing model and a passive handler, respectively. However, one then
can again not achieve a delivered policy since the server assigned thread can be returned only after the
processing is completed. Nevertheless, an active handler on top of a synchronous server invocation
mode with one-way arguments only is able to emulate an asynchronous client side interface with a
delivered policy if only a synchronous interaction with a processed policy is available.

Generally, there is not a big difference if the processing models are combined with an asyn-
chronous server side invocation mode (V) as shown in figure 5.61. The only difference is that the
server already provides the split interface and thus hides the glue logic that is otherwise provided
inside the communication patterns. Furthermore, the point of time of returning from the invocation
method marked by ➄ has no effect on the client side anymore. The only relevant reference is when
the completion method ➃ is invoked and thus even a synchronous client part invocation always re-
turns after ➃ and independently of the server part processing model. With an asynchronous server
side invocation mode, the user gets full control over the point of time at which a processed policy is



5.6. THE FRAMEWORK BUILDER VIEW ON THE APPROACH 131

1

:Server

4

1

1

:Handler:Server

:Server

4

4

5

5

5

:Interface

:Interface

:Implementation:Interface

completion method can
be called even before
anything else is done

invoke two−way

J

invoke one−way
in / inout
in

void
inout / outcompletion two−way

completion one−way void

voidreturn invocation

− passive user handler

K

− asynchronous (V)

− active user handler

L

− asynchronous (V)

:Handler

in / inout

void

void

void

in / inout

in
invoke two−way
invoke one−way

inout / out
voidcompletion one−way

completion two−way

return invocation

return invocation

invoke two−way
invoke one−way in

void
inout / out
voidcompletion one−way

completion two−way

bl
oc

ke
d

bl
oc

ke
d

V

V

U

V

V

V

bl
oc

ke
d

pr
oc

es
se

d

− direct processing
− asynchronous (V)

pr
oc

es
se

d
pr

oc
es

se
d

invocation

completion

invocation

invocation

completion

completion

A

A

A

C

C

C

Figure 5.61: The asynchronous server part invocation mode (V) and different processing models.

considered as being fulfilled. Independently of the processing models, the processed acknowledgment
is immediately returned to the client part and not earliest after the upcall was completed. In particular,
even with a passive handler, one can reduce the client side delay when awaiting a response by calling
the completion method as soon as possible. Further housekeeping activities that, of course, block the
upcalling thread in case of (J) and (K), can still be done inside the invocation upcall without affecting
the client side. Even with a synchronous client part invocation, the client is not required to wait for that
additional time that is required for the processing after having called the completion method. Never-
theless, the point of time of calling the completion method has to be chosen carefully. All activities
prior to calling the completion method are covered by a processed policy. All subsequent activities
are still executed but are not covered by the processed policy. Calling the completion method before
doing anything else covers no activities by the processed acknowledgment and is thus equivalent to a
delivered policy. Thus, in case of one-way interactions, one can again emulate a delivered policy on
top of a synchronous client part invocation that provides a processed policy only.

The passive direct processing model (J) calls the synchronous user level method from inside the
upcalling invocation method, calls the completion method after the user level method returned and
then returns to the server. Both handler models, passive (K) and active (L), can be implemented
without additional glue logic. All three models, (J), (K) and (L), block the upcall from ➀ to ➄.
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With a passive handler, the blocking time includes the request processing and with an active handler,
➄ is already reached after the request got accepted by the handler. Thus, the upcalling thread is
blocked only as long as it takes to forward the request to the handler. Since returning from the server
part invocation method upcall does not close a request that still has to be kept open, an important
difference exists for two-way interactions. These can now take advantage of an active handler. In
contrast to the processing model (O), where the upcalling thread is blocked for the time required
to perform the processing, the corresponding processing model (L) blocks the upcalling thread only
for the time required to forward the request. As a consequence, in contrast to a synchronous server
invocation mode (U), an asynchronous server invocation mode (V) can circumvent any server level
threading models even with two-way interactions and it is not restricted with respect to implementing
user level threading models.
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Figure 5.62: The advantage of an asynchronous server side invocation mode over a synchronous
one.

The advantage of an asynchronous server side invocation mode over a synchronous one is illus-
trated in figure 5.62. Thereby, there is no relevant difference between the invocation modes (V) and
(X). The example shows a request that needs to go through different processing units that can handle
only one task at a time. In case of the asynchronous invocation mode shown on the left, one request af-
ter the other is pushed through the processing pipeline. Of course, the processing units of the pipeline
have to be active, but a single-threaded server is sufficient to exploit the capacity of the processing
pipeline. In case of the synchronous invocation mode shown on the right, active processing nodes
make no sense since the server upcall always has to await the result before it can return and thus, it is
more efficient to use the upcalling thread of the server to invoke passive processing nodes. The overall
throughput then, however, is reduced significantly since the first processing unit is blocked until the
final result is available and even a multi-threaded server does not improve the throughput due to the
synchronous invocation of the processing units. Nevertheless, the throughput can achieve the level of
the asynchronous invocation mode if one uses active processing units and if one decouples them from
the synchronous invocation according to the processing model (O). A multi-threaded server allows to
push further requests into the pipeline concurrently to that ones that are currently being processed.
The disadvantage is that one needs as many concurrent server upcalls as there are requests in the pro-
cessing pipeline. The threads are simply used to await the result that is to be returned and are thus
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wasted.
To summarize, an asynchronous server side invocation mode provides maximum flexibility with

respect to the processing models. An asynchronous invocation mode fulfills all premises to implement
any threading model at the user level and one is not restricted to the server provided threading models.
The great advantage of an asynchronous server invocation mode is that even with two-way arguments,
the upcalling thread gets released as soon as the request got forwarded to an active handler. That is
since the invocation and the completion of a request are separated. The deferred delivery of to be
returned arguments is already supported by the server interface and does not require the upcall to be
blocked as it is the case with the synchronous invocation mode. Therefore, even two-way requests
and one-way requests with a processed semantics block the server upcall in case of active handlers
only for the time needed to forward the request to the handler. Other activities of the upcalling thread
are not blocked as long as the handler accepts further requests. In that case, the upcalling thread can
be shared by different servers. If the active handler uses a buffer, the upcalling thread even does not
have to await the availability of a handler thread and can return immediately after the request got
forwarded to the buffer. Again, the threading models of the server can still be exploited by using a
direct processing model or a passive handler, respectively.

In principle, threading models and buffers can be placed at various places. They decouple the ex-
ecution of independent requests and the client part invocation from the server side processing. The in-
teraction patterns have to be implemented carefully to avoid unwanted side effects like blocked servers
or wasted resources. Depending on the layer at which threading models and buffers are placed, they
cannot be circumvented by user level means without wasting resources. A single-threaded version
of a server with an asynchronous invocation mode is sufficient to implement any user level thread-
ing model without wasting resources even with two-way interactions. However, in most cases, only
synchronous invocation modes are available with common middleware and communication systems.
Thus, in case one does not want to waste numerous threads, one is either limited to the provided
threading models or one has to use one-way interactions only.

5.6.4 Mapping Interaction Patterns onto Interaction Models

Communication middleware systems provide different interaction models. Typically, not all interac-
tion patterns have a direct equivalent at the level of the communication system. Depending on the
capabilities of the communication system, the mapping of the interaction patterns onto the provided
interaction models requires varying efforts. Meanwhile, the interaction models of middleware sys-
tems like CORBA, for example, already cover most of the required interaction patterns so that one
could directly map interaction patterns onto interaction models. However, even CORBA does not pro-
vide an asynchronous server side invocation mode and the memory footage and complexity of highly
advanced middleware systems is not suitable for all applications. Generally, as soon as not all interac-
tion patterns have a corresponding interaction model, one needs to appropriately emulate the missing
interaction patterns by means of the available interaction models. Independently of the available inter-
action models, one always has to consider how several interaction patterns of a communication pattern
interact with each other and what kind of processing models are required to achieve the desired level
of decoupling.

In principle, there are many different ways of mapping the interaction patterns onto the interaction
models that are provided by communication systems. Of course, one can individually adjust the im-
plementation of the interaction patterns each time a new communication system is used to eventually
gain from the provided interaction models. This might result in a better overall performance but would
require significant efforts with every migration. The most obvious disadvantage is that elaborate and
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careful testing is needed with every migration to ensure the conformance of the implementation with
the specification. The implementation of the interaction patterns is in particular demanding and should
thus be done only once and inside the communication patterns without requiring adjustments with ev-
ery migration. Customized adjustments of the mapping of the interaction patterns to fully exploit the
individual capabilities of communication systems require a comprehensive understanding of the inter-
play of the interaction patterns and the interaction models. Therefore, the goal of the explanations in
the remaining sections on the framework builder view on the approach is twofold. At first, the relevant
details that have to be considered when mapping the interaction patterns onto interaction models and
when emulating interaction patterns on top of interaction models are described and motivated. That
establishes the basis for individual mappings and optimizations. Secondly, in section 5.6.6, the generic
connection oriented split protocol is introduced. This protocol alleviates the demands on the commu-
nication system such that the interaction patterns can be mapped easily onto most of the mainstream
communication systems.

5.6.4.1 Communication Middleware Systems

In general, communication middleware systems can be roughly divided into two large groups with
one mainly providing an asynchronous one-way and the other a synchronous two-way interaction
model. Often, the asynchronous one-way interaction is the least common base of message based
middleware systems whereas object based middleware systems typically support synchronous two-
way interactions. Of course, there are many object based middleware systems that also provide a
messaging interface.

Interactions with a delivered policy are always considered as implementing a loose coupling. The
coupling of interactions with a processed policy is denoted as tight if returning from a client side
method depends completely on the server, that is, there are no client side means to abort an inter-
action. Typically, a tight coupling between the client and the server is implemented by synchronous
communication mechanisms if no support from the communication system is provided to abort block-
ing calls.

interaction client server
model characteristics characteristics
E C asynchronous one-way delivered W synchronous one-way user
F B synchronous two-way processed U synchronous two-way pattern
G1 C asynchronous one-way delivered U synchronous one-way pattern
G2 - asynchronous one-way reliable send U synchronous one-way pattern
G3 - asynchronous one-way unreliable send U synchronous one-way pattern
H D asynchronous two-way delivered U synchronous two-way pattern

Table 5.41: Summary on interaction models supported by communication middleware systems.

Figure 5.63 illustrates the interaction models that are typically supported by communication mid-
dleware systems and table 5.41 summarizes their main characteristics. Furtheron, an asterisk indicates
that a client side method is not abortable. In case of (F)

�
, that is related to the method which performs

the synchronous interaction and in case of (H)
�

to the method that awaits the answer.
The interaction models (E), (F), (G1) and (H) correspond to the interaction patterns (C/W), (B/U),

(C/U) and (D/U). The other interaction models do not have a direct equivalent. The interaction model
(G2) provides a reliable send policy, that is no message gets lost but no feedback is given if a message
is dropped due to a nonexisting recipient. The interaction model (G3) even allows messages to get
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Figure 5.63: Overview on interaction models supported by communication middleware systems.

lost and is not considered here.

Most message based systems implement the interaction model (G2) providing a reliable send pol-
icy where incoming messages invoke a before registered upcall. Often, the only way to implement
two-way interactions is to split them into two independent one-way messages which requires appro-
priate glue logic to correctly compose the independent interactions. Additionally, message based
systems typically support single-threaded servers only and thus require user level processing models
to avoid a blocked server. Of course, the advantage is that one can implement any user level process-
ing model without wasting server resources. Another advantage of message based systems is their
communication level asynchronicity that already decouples the sender and the receiver according to a
loose coupling.

TCP sockets behave like the interaction model (E). One needs at least one thread that is always
able to accept incoming data to avoid that operating system buffers get blocked and that delays get
propagated back to the sender. Threading models are essential to decouple the user level activities
from the communication activities.

Some message based systems are based on mailboxes. In contrast to a socket based approach,
mailboxes already provide the buffers for incoming messages. Since they also behave like the inter-
action model (E), one again needs at least one thread to pick up and dispatch the mailbox entries.
Again, threading models are essential to decouple the dispatching of mailbox entries from the user
level activities.

Remote Procedure Calls (RPC) typically implement the interaction model (F)
�

. The difficulty is to
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implement the asynchronous interaction patterns if only synchronous interactions are provided and to
achieve the required loose coupling. Very often, RPC implementations neither support asynchronous
client side invocations nor advanced threading models.

Many object based middleware systems support various interaction models, always including the
interaction model (F)

�

as standard interaction model. (F)
�

also describes the standard remote method
invocation of CORBA. Due to the synchronous server side interface, object based middleware nor-
mally supports various object level threading models. Of course, this is not only to avoid serialization
of requests and to avoid blocking the communication activities but also to relieve the middleware
user from resource allocation problems as far as possible. The price to pay is being restricted to the
provided threading models or wasting resources when additionally implementing user level threading
models. With CORBA, for example, more elaborate threading models like priority based thread as-
signments are specified in the CORBA 3 realtime extensions only. These are supported by very few
CORBA implementations only, impose further demands on the overall system and are therefore an
overkill for most applications. Unfortunately, CORBA does not support asynchronous servers and one
thus has to live with the drawbacks of synchronous two-way server side interfaces.

CORBA provides oneway declarations for methods that have in arguments only [134]. The client
side invocation can be completed by the object request broker (ORB) before the server side process-
ing is finished since no return arguments have to be awaited. Therefore, oneway declarations change
the client side characteristics of methods with in arguments only from synchronous one-way to asyn-
chronous one-way. However, the CORBA 2.x specification does not include any guarantees for oneway
declared methods and thus the reliability of the interaction depends on the features of the used CORBA
implementation. That has been recognized as severe drawback and at least CORBA 3 provides several
policies for oneway declarations called sync scopes [120]. These now provide the already described
guarantees for asynchronous interactions. For example, the sync none policy returns immediately
after the request got forwarded to the local ORB but even before the request is passed to the trans-
portation layer and thus corresponds to (G3). In contrast thereto, the sync with server policy returns
after the request was delivered at the server side ORB but before it is processed there. However, being
delivered guarantees that it is going to be processed and that the recipient cannot get destroyed as long
as there are pending requests. Thus, that policy provides an acknowledgment that the request arrived
at the server and is going to be processed for sure and thus corresponds to (G1). Only the newly
introduced sync with server policy turns the unreliable CORBA 2.x oneway interactions into reliable
asynchronous one-way interactions with a delivered policy.

Finally, the asynchronous messaging interface (AMI) of CORBA implements an asynchronous
two-way interaction. The goal of the AMI is to provide an asynchronous client side interface without
requiring any server side changes. Two-way interactions are automatically split into a one-way request
method and a data structure to hold the lateron received response. The standard synchronous remote
methods get usable in an asynchronous way. However, the AMI results in bulky interfaces since the
CORBA stub always contains both the method for the synchronous invocation and the methods and
structures needed for the asynchronous invocation. The AMI comes in two flavors, namely the polling
and the callback model [5]. From the perspective of the user, the polling model is easier to handle
since the user can decide on when to call the response method and since the client side buffer is
provided by the communication system. However, the polling model is not as efficient as the handler
based version. In contrast to the polling model, the handler based version requires more elaborate user
level structures to properly synchronize deferred activities with received responses and it requires user
level buffers. The polling AMI model corresponds to the (H)

�

interaction model since the client side
request implements a delivered policy and since the response provides a processed semantics.

The advantage of the CORBA reliable oneway approach is the communication level asynchronicity
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that already decouples the client stub and the servant by means of the ORB and its buffers. Thus, one
does not have to achieve that decoupling at the framework level. The ORB level decoupling is also the
basis of the CORBA AMI model that enriches the client side interface by asynchronous invocations. It
then leaves it to the user to invoke a remote method either synchronously or asynchronously. However,
in case of the AMI model, one still has to live with the drawbacks of synchronous two-way server side
interfaces and in case of the reliable oneway approach, one can transmit arguments into one direction
only.

Unfortunately, asynchronous communication mechanisms are either only available with message
based systems that typically provide one-way interactions only or are only available as client side
invocation model with a synchronous server side invocation as it is the case with some object based
middleware systems. Apparently, nearly all communication middleware systems provide a server side
synchronous characteristic only. At least with two-way requests and with one-way interactions with a
processed semantics, this results in wasted resources if one does not stick to the server level threading
models.

For all of the above communication middleware systems, messages or requests between a partic-
ular client and a particular server keep their initial order and never pass each other. Since that holds
true for most of the communication middleware system or can be ensured by the lower layers inside
a communication middleware system, it is furtheron assumed that this property always holds true.
With respect to the interaction patterns, the kept order simplifies the protocol that emulates interaction
patterns on top of various interaction models.

5.6.4.2 Potential Mapping Options

The goal is to find a generic mapping between interaction patterns and interaction models such that
the modifications that are required in case of migrating to another communication system are reduced
to a minimum. Mapping the interaction patterns onto interaction models that form the least common
basis across typical communication systems would require adjustments at the syntactical level only
but not at the level of the communication logic inside the communication patterns.

required interaction patterns provided interaction models
CORBA RPC message based TCP sockets and mailboxes

(B/U) F � (B/U) F � (B/U) G2 — E (C/W)
(B/V) G1 (C/U)
(C/U) G3 —
(C/W) H � (D/U)
(D/U)
(D/V)

Table 5.42: Required interaction patterns and provided interaction models.

A summary on the required interaction patterns and the interaction models typically provided by
the various types of communication middleware systems is given in table 5.42. As already mentioned,
at least either a synchronous two-way (F)

�
or an asynchronous one-way (G1, G2, E) interaction model

is provided. Again, the asterisk marks missing facilities to abort blocking calls. However, none of the
interaction models is available across all communication systems, neither the synchronous two-way
nor the asynchronous one-way interaction model.

A passable approach is to emulate the interaction patterns on top of a single interaction pattern
only. The advantage is that this approach achieves a very lean interface between the communication
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patterns and the communication system with only one interaction pattern being visible. All other
interaction patterns are emulated and are thus not affected by a migration and in case of migrating to
another communication system, one has to reimplement one interaction pattern only. Furthermore,
the conformance checks have to be performed with one interaction pattern only. That interaction
pattern, however, has to be able to emulate all other interaction patterns and it has to be mappable
onto different interaction models. In particular, it has to work on top of a synchronous interaction
pattern as well as on top of an asynchronous one, either one-way or two-way. Those requirements
alleviate the demands on the communication system such that they can be met by nearly any of the
mainstream communication systems.

Since the (D/V) interaction pattern can emulate all other interaction patterns, one option is to
solely map the (D/V) interaction pattern onto one of the interaction models provided by the used
communication system and to emulate all other interaction patterns by means of the (D/V) interac-
tion pattern. Unfortunately, the (D/V) interaction pattern cannot be mapped easily onto the typically
available interaction models. Actually, it often requires extensive and complex glue logic.

In contrast to the (D/V) interaction pattern, the (C/U) interaction pattern is much easier to imple-
ment on top of standard interaction models. The first part of the (D/V) interaction pattern already
consists of a (C/U) interaction pattern and the second part is a (C/W) interaction pattern. The char-
acteristic (W) is emulated on top of the characteristic (U) by a buffer that is filled by the upcall of
(U) and that is read by the interface method of (W). The interface of the communication patterns to
the communication system is again reduced to a single interaction pattern only. However, the (C/U)
interaction pattern is mapped onto standard interaction models much easier.

5.6.5 The Split Protocol and its Challenges

The leaner solution compared to the two-stage emulation of the interaction patterns on top of the
(D/V) interaction pattern that is emulated by two (C/U) interaction patterns is to directly emulate
the interaction patterns by solely using the (C/U) interaction pattern. That approach is called the
split protocol approach. Since the (D/V) interaction pattern can already emulate all other interaction
patterns and since that can be emulated by the (C/U) interaction pattern, the (C/U) pattern is also
sufficient to emulate all other interaction patterns.

Synchronous interactions and two-way interactions are split into two independent one-way inter-
actions. The invocation message transmits the in arguments and the in part of the inout arguments
from the client to the server and the completion message transmits the out part of the inout arguments
and the out arguments from the server to the client. In case of emulating a synchronous one-way
interaction, the completion message is just empty and provides the processed acknowledgment only.

The main advantage of the split protocol approach again is the lean interface between the commu-
nication patterns and the communication system. The (C/U) interaction pattern is the only one that is
visible at the interface of the communication patterns to the communication middleware system and
that has to be mapped onto an interaction model. It is important to note that there are two features of
the (C/U) interaction pattern that predestinate it as interface pattern. Due to the one-way characteris-
tic, it can be mapped onto communication systems that provide a one-way interaction only and due to
the delivered policy, it already provides the required decoupling between the client and the server part
as required by the interaction patterns.

In particular, the delivered policy is mandatory and is exploited by the emulation of the other
interaction patterns. Even if it looks like the (C/U) interaction pattern could be mapped easily onto all
interaction models, it is challenging to achieve the delivered policy on top of the various interaction
models. On top of a synchronous interaction model, one has to convert the processed policy into a
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delivered policy without ending up at a reliable send policy only. On top of a reliable send policy, one
has to achieve the guarantee of the delivered policy that requests get processed once they are delivered
successfully.

This section illustrates those challenges and discusses several solutions and their drawbacks as
preparation for the connection oriented split protocol introduced in section 5.6.6.

5.6.5.1 Emulating Interaction Patterns by the (C/U) Interaction Pattern

The basic interface between the communication patterns and the underlying communication mecha-
nism is shown in figure 5.64. B denotes the interface of the communication patterns to the communi-
cation system abstraction. The emulation of interaction patterns is part of the communication patterns.
Communication patterns provide and accept user level data in marshalled form only. Messages are
sent by invoking the client part of an appropriate (C/U) interaction pattern and messages are received
via callbacks that are invoked by the upcalling server part of a (C/U) interaction pattern. Due to the
one-way semantics of the split protocol, neither the methods called to send data can return any param-
eters from the recipient nor can the invoked callbacks return any parameters to the sender. Of course,
the split protocol requires appropriate glue logic inside the communication patterns to coordinate the
independent (C/U) interactions. The price to pay is the increased complexity of the implementation of
the interaction patterns since these have to be emulated on top of the (C/U) interaction pattern inside
the communication patterns. However, that additional complexity has to be mastered only once with
the implementation of the interaction patterns and not with every migration to a new communication
middleware system. It is much better to cope with these demanding details only once and inside the
communication patterns rather than with every middleware migration. The additional complexity of
the communication patterns that host the emulation of the interaction patterns thus pays off very soon.

callback interface

method call for sending upcall from communication system

server part of (C/U)

interaction patterns
emulation of the

C

...

...

in marshalled representation
(communication objects)
user level data

U

communication

B

communication pattern

client part of (C/U)

...

...

system abstraction

Figure 5.64: The interface between the communication patterns and the underlying communication
mechanism.

Figure 5.65 illustrates the split protocol on top of the (C/U) interaction pattern. The simplified
illustration of this interaction is shown in figure 5.66. D is the invisible intercomponent interface
hidden by the communication mechanism. The interaction is initiated from the client part shown on
the left and it works exactly the same way vice versa.

Table 5.43 gives an overview on emulating the interaction patterns by means of the (C/U) interac-
tion pattern. The independent (C/U) interactions of the split protocol already provide an asynchronous
server side invocation mode (V) that is otherwise only hard to achieve. Emulating a synchronous char-
acteristic is the easier part even if it requires substantial glue logic. Using multiple interaction patterns
inside a communication pattern results in the appropriate number of independent (C/U) interaction
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Figure 5.65: Implementing interaction patterns on top of (C/U) interaction patterns.

patterns.
The client side synchronous characteristic of the (B/U) interaction pattern is emulated by a wrap-

per that first invokes the client part of ➀ and then blocks by a suitable mechanism until the response
arrived by ➁. The advantage of the split protocol is that the client side blocking that awaits an answer
is handled locally and can thus be implemented such that it can be aborted locally as required by the
blocking flag without any further support from the communication system. The server side character-
istic is emulated by calling a synchronous user level method from inside the upcall of ➀. The client
part of ➁ is invoked from inside the upcall of ➀ after the user level method returned and just before
leaving that upcall.

The client side of the (B/V) interaction pattern is the same as for the (B/U) interaction pattern.
However, the client part of ➃ is now invoked from inside the server side completion method.

The (C/W) pattern requires one (C/U) interaction pattern only. The client side interface method
of the (C/W) pattern invokes the client part of ➄ and the server side upcall of ➄ forwards the request
to a buffer.

The client side request method of the (D/U) interaction pattern maps directly onto the interaction
➆ and the emulation of the server side characteristic (U) is the same as for the (B/U) interaction
pattern. The upcall of ➇ at the client side of the (D/U) interaction pattern is used to forward the
response to a buffer.

The first part of the (D/V) interaction pattern maps directly onto the interaction ➈. The server side
completion method invokes the client part of ➉ and the upcall of ➉ at the client part of the (D/V)
interaction pattern again forwards the response to a buffer.
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(B/U) (B/V) (C/W) (D/U) (D/V)
(C/U) interactions 2 2 1 2 2
user interface client wrapper wrapper direct request: direct request: direct

response: blocks response: blocks
on buffer on buffer

user interface server wrapper direct blocks on buffer wrapper direct

client to server ➀ ➂ ➄ ➆ ➈

client side downcall inside wrapper inside wrapper direct request method request method
server side upcall execute user execute forward to execute user execute

level method, invocation buffer level method, invocation
send answer method send answer method
from inside from inside
upcall after upcall after

processing is processing is
completed completed

threading policy relevant sufficient relevant relevant sufficient
inside at user inside inside at user

emulation level emulation in emulation level
beneath user case of filled beneath user

interface up buffers interface

server to client ➁ ➃ - ➇ ➉

server side downcall (see above) called by - (see above) called by
completion completion

method method
client side upcall signals signals - forwards to forwards to

wrapper wrapper buffer, signals buffer, signals
response response
method method

threading policy not required not required - not required not required

Table 5.43: Emulating the interaction patterns by two independent (C/U) interactions.
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5.6.5.2 Processing Models and the Emulation of the Interaction Patterns

Figure 5.67 summarizes the processing models and their effects on the split protocol. Of course,
the upcalling thread at the server part of the (C/U) interaction pattern is blocked from ➀ to ➆. Due
to the one-way arguments of the upcalls from the communication system, one can already return to
the server as soon as the request got forwarded and due to the split protocol, returning to the server
does not implicitly signal a processed acknowledgment. Generally, threading models are relevant at
the server part of the (C/U) interaction pattern if the upcall blocks on resources that get available
only after the upcalling thread is released. If the upcall requires only resources that are available
independently of the upcalling thread, one can use the upcalling thread to perform the processing.
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Figure 5.67: The (C/U) split protocol and processing models.

The upcalls of ➂ and ➈ shown in table 5.43 invoke the user level interface at the server side
of the interaction patterns (B/V) and (D/V), respectively. Thus, the user level implementation can
block the upcalling thread that might be needed to keep the interaction pattern, the communication
pattern or the component alive. The important point is that user level threading models are sufficient
to achieve any level of decoupling between the upcalling thread of the interaction pattern and the user
level activities. With a user level threading model, one does not need any threading model inside the
interaction pattern and one does not waste threads in combination with an active user level processing
model. Nevertheless, one can exploit threading models provided by the communication system due
to the decoupling of the delivered policy of the (C/U) interaction pattern. If the threading models
provided by the communication system are sufficient, one can relinquish the thread assignment to the
communication system and one can use passive user level processing models only.

In contrast thereto, user level threading models at the server cannot decouple the upcalling thread
of ➀ and ➆ from the user level implementation. The only way is to already use a separate thread
per invocation of the emulated synchronous user level interface. The situation is the same as with
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the processing model (J) in figure 5.61. The invocation method compares to the upcall of the (C/U)
interaction pattern and the completion method to invoking the client part of ➁ and ➇, respectively.
Since returning from the emulated synchronous user level interface is always interpreted as closing the
processing of the request, one cannot take advantage from a user level threading model. One still has
to await the completion of the processing as it is the case with the processing model (O). Otherwise,
➁ and ➇ would be invoked too early and would thus violate the processed characteristic of the (B/U)
and the (D/U) interaction pattern. Since the upcalls of ➀ and ➆ return only after the user level method
was executed, the upcall is blocked from ➀ to ➄ and independently of the user level processing
model. To summarize, the emulated synchronous user level upcall depends on the threading model
beneath the user level interface. Since all resources needed by the user level implementation must be
accessible without first releasing the upcalling thread and since one should not restrict the user level to
certain resources only, one always needs a separate thread per user level upcall. In case the thread per
request model, that assigns a separate thread to every upcall, is not available with the server part of the
interactions patterns ➀ and ➆, one needs a separate thread per user level upcall inside the server part
emulation of the (B/U) and the (D/U) interaction pattern, namely above the communication system
and beneath the user level interface.

B A

invocation

upcall

server part (B/U), (D/U):Active Queueemulation of (B/U), (D/U)

U

U

C

1, 7

2, 8

communication communication
patternsystem

user

Figure 5.68: An active queue inside the server part emulation of the (B/U) and (D/U) interaction
patterns.

An obvious but unsuited processing model for use inside the server part of the (B/U) and the (D/U)
interaction pattern is the active queue shown in figure 5.68. The upcalls ➀ and ➆ are solely used to
enqueue the requests and thus behave like ➂/(O) respectively ➆/(I2). The thread of the active queue
calls the emulated synchronous user interface (U). As soon as that upcall returns, the active queue calls
the client parts of ➁ and ➇ before the next request is processed. Since there is no chance to circumvent
the pattern internal processing model at the user level, one cannot circumvent the processing order
enforced by the active queue. The buffer of the active queue decouples the upcall but does not allow a
user level threading model to override the processing order introduced by the queue due to the server
side synchronous pattern initiation mode (U).

Blocking the server side upcall of the (C/U) interaction ➄ is acceptable since the upcall solely
stores the request in a buffer and since the resources needed to access the buffer do not depend on
the upcalling thread. The same holds true for the interactions ➁, ➃, ➇ and ➉ that forward responses
to the buffers and that signal the arrival of the response. However, the upcalling thread of ➄ gets
blocked as soon as there is not enough space left in the server side buffer of the (C/W) interaction
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pattern to accept the request. Thus, one has to make sure that the blockade does not affect any shared
resources like system level buffers and threads. The responsibilities of the upcalling thread should not
comprise other vital tasks of a component like the communication system, for example. Furthermore,
one should not share such communication resources where filled up buffers prevent other interactions
from making progress. It is important to note that the upcalls of ➁, ➃, ➇ and ➉ are not affected
since they are always able to get rid of the response message. The difference to the (C/W) interaction
pattern is that with a successful invocation at the client side of the interaction pattern, one also has
successfully set up the infrastructure to accept a response. Even if the response itself is too large, one
can discard it but one can still use the prepared infrastructure to inform the client that the response
got discarded. The upcall of the (C/U) interaction pattern thus never has to wait until enough memory
is available. Therefore, even if the delivery gets delayed, a congestion always gets resolved and the
serialization of all upcalls belonging to the (C/U) interaction patterns ➁, ➃, ➇ and ➉ is possible. That
is the reason why these upcalls can share a thread to perform all the upcalls and why shared buffers
and communication resources are allowed for those (C/U) interaction patterns.

In principle, the (C/U) interaction pattern gives full control over the used resources. Due to the
one-way communication, it allows to implement any kind of processing model above the communi-
cation system level without wasting upcalling threads. Threading models can be implemented either
inside the emulation of the interaction patterns or at the user level. The latter is done by means of dif-
ferent types of handlers. The user level processing models can be finetuned without being restricted to
given threading models of the communication system. The only patterns that depend on a threading
model beneath the user level, either inside the emulation or even at the level of the communication
system, are the server parts of the (B/U) and the (D/U) interaction patterns. Nevertheless, threading
models of the communication system can still be exploited. Due to the delivered policy of the (C/U)
interaction pattern, the client part invocation method is decoupled from the server part upcall and it
returns independently of the completion of the server part upcall. Thus, no additional arrangements
have to be taken to achieve the required level of decoupling.

5.6.5.3 Nested Calls of Interaction Patterns

Interaction patterns calling each other must be aware of resources they share to avoid deadlocks. At the
level of the emulation of the interaction patterns, the upcall of the server part of the (C/U) interaction
pattern invokes the client part of another (C/U) interaction pattern. At the level of the communication
patterns, a server part handler might invoke a client part method with a processed semantics and thus
gets blocked until the response arrives. The upcalling thread of the first interaction pattern that now
blocks in the second interaction pattern might just be needed to keep the communication alive that
can provide the expected response. Thus, the safe way to invoke a blocking method of an interaction
pattern is to always use a thread that is decoupled from the internals of an interaction pattern. The
decoupling can be provided either by a user level processing model or by a threading model inside the
interaction pattern. In principle, separate threads can be avoided if the resources that are required by
the upcalling thread are available independently of the upcalling thread. That is, separate threads can
be avoided as long as the availability of required resources does not depend on releasing the upcalling
thread.

5.6.5.4 The Decoupling Characteristic of the Delivered Policy

The delivered policy of the (C/U) interaction pattern is mandatory for the emulation of the other
interaction patterns. Of course, the processing models of the upcalls of the split protocol are directly
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related to the ones shown in figure 5.60. Thus, a client part asynchronous invocation depends on the
delivered policy of the (C/U) interaction pattern to always return at ➀. Figure 5.69 and figure 5.70
show the emulation of the (D/V) interaction pattern by means of two independent (C/U) interaction
patterns. Due to the delivered policy, the client part asynchronous characteristic (D) is not affected
by the server side processing model and the processing model affects the server reactivity only. The
delivered policy ensures that the client part invocation always returns after ➀ and independently of
the processing models used at the server side. Of course, the upcall is blocked for the time required to
perform the processing or rather to forward the request to the active handler.
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Figure 5.69: A passive handler and a (D/V) interaction pattern emulated by two (C/U) interaction
patterns.
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Figure 5.70: An active handler and a (D/V) interaction pattern emulated by two (C/U) interaction
patterns.

Figure 5.71 shows the same situation but with a synchronous interaction that implements a pro-
cessed policy. It uses a synchronous one-way (B/U) interaction pattern instead of the asynchronous
(C/U) interaction pattern. Due to the active handler, the client side characteristic is still matched.
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However, the situation changes completely if a passive handler is used as shown in figure 5.72. Now,
the client side invocation returns only after the server side processing is completed and thus the de-
livered semantics to be emulated is violated. The resulting tight coupling of the client and the server
is solely caused by the processed policy of the synchronous interaction model. Returning from the
client side request method is tantamount to an already available answer. The interaction still works
correctly if steps are taken to avoid deadlocks but a client side asynchronous characteristic does not
show the expected decoupling anymore and thus becomes obsolete. Furthermore, without support
from the communication system, a client side interface method could not be aborted before the server
side processing is completed.
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Figure 5.71: An active handler and a (D/V) interaction pattern emulated by two (B/U) interaction
patterns.
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Figure 5.72: A passive handler and a (D/V) interaction pattern emulated by two (B/U) interaction
patterns.

Potential sources of deadlocks that arise solely due to the fact that a protocol is put on top of
a synchronous communication become obvious with the interaction illustrated in figure 5.72. If the
request holds a lock that is needed to process the received answer, then this results in a selflock
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since the lock cannot be acquired again. Even recursive locks do not prevent from selflocks since
the thread to process the incoming answer is in most cases different from the thread holding the lock
in the request method. As can be seen in figure 5.69, the asynchronous implementation of the same
interaction causes no trouble.

The challenge is to return to the server before the processing is completed that is at the latest at
➆ of (I2) in figure 5.67. According to figure 5.60, one has to leave the upcall as soon as possible as
marked by ➂ which requires an active processing model. The processing models (M) and (N) cause
the client part invocation to return only after the server part processing is completed as labeled by ➁

respectively ➆/(I1) in figure 5.67. Since the client part characteristics of the interaction patterns have
to be independent of the user level processing models, one has to provide an active processing model
on top of the synchronous communication to achieve the asynchronous characteristic of the (C/U)
interaction pattern that forms the interface to the communication patterns. Basically, that is the same
situation as with the emulation of the synchronous server characteristic (U) described in the previous
section. Instead of returning to the server as soon as possible to avoid a blockade of the upcall, one
now has to return from the upcall as soon as possible to decouple the client side invocation from the
server side processing.

With a processed policy, the client part user interface method of the (C/U) interaction pattern and
the client part request method of both the (D/U) and the (D/V) interaction patterns return only after
the server part upcall was completed. Thus, the client side asynchronous characteristic becomes ob-
solete without decoupling the server side upcall from the request processing. However, the desired
asynchronous characteristic is achieved only with threading models that are located above the com-
munication system level. Threading models of the communication system cannot be exploited since
the client side return is directly related to the return of the server part upcall and in case of exploiting
threading models of the communication system, one can return from the upcalling thread only after
that thread had been used to perform the processing. The global characteristics of the client part inter-
face of the (B/U) and the (B/V) interaction patterns are not affected by a processed policy. However,
their client part interface methods remain in the interaction ➀ or ➂ until the interaction with the server
is completed. Depending on the server side processing model, one has to await the completion of the
user level processing. Thus, the client part user interface can be aborted either only after the server
side processing is completed or if appropriate support from the communication system is available to
abort blocking calls into the communication system.

In all cases, two-way interaction patterns require means to prevent from deadlocks at the client part
since the answers are already provided while the request is not yet finished. In table 5.43, the upcalls
➁, ➃, ➇ and ➉ must only access resources that are not locked by the corresponding interaction ➀, ➂,
➆ and ➈. The upcalls ➁, ➃, ➇ and ➉ solely invoke the client part emulation of the interaction patterns
and cannot get blocked by a user level implementation. The emulation of the interaction patterns can
be implemented such that the processing inside the emulation does not suffer from potential deadlocks
due to a processed policy. Signalling the availability of a response does never block but the upcalls
need to acquire a mutex that protects the buffer that stores the answer. The emulation is not affected
by a processed policy in case that this mutex is not locked while the interactions ➀, ➂, ➆ and ➈ are
invoked.

To summarize, using a processed policy instead of the delivered policy introduces a tight coupling
between the client and the server part of the emulated interaction patterns. The delivered policy is
required with the interactions ➀, ➂, ➆ and ➈. The other interactions including the interaction ➄

of the (C/W) interaction pattern are not affected since their upcalls are not involved in the actual
processing of a request. They either provide a response or store a request in a buffer which does not
require the decoupling of the delivered policy. Compared to a delivered policy where the invocations
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of ➁, ➃, ➄, ➇ and ➉ return before the upcall is invoked, awaiting the completion of the upcall in case
of a processed policy is completely acceptable for those interactions.

5.6.5.5 The Implicit Acknowledgment of the Delivered Policy

A mandatory characteristic of the delivered policy of the (C/U) interaction pattern is the implicit
acknowledgment. It gives the sender the feedback that the message is going to be processed. In
contrast, as illustrated in figure 5.73, a reliable send policy gives no feedback if a message is dropped
due to a nonexisting recipient. Even if no message gets lost, one basically never knows whether the
recipient still exists and whether one can expect a response message. Thus, one has to take further
arrangements to either achieve the delivered policy in case it is not available or to extend the protocol
above the interaction patterns such that one can also do with the weaker reliable send policy.
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Figure 5.73: A reliable send policy. No feedback is given on the discarded message if the recipient
disappeared.

5.6.5.6 Converting a Reliable Send Policy into a Delivered Policy

The first option is to emulate the delivered policy by introducing additional acknowledgment mes-
sages. These are handled on top of the reliable send policy of the communication system and beneath
the (C/U) interaction patterns that are visible at the interface to the communication patterns. However,
this is not as easy as it appears at first glance. Since no message gets lost, the acknowledgment fails to
appear only if the recipient is not available anymore. Getting an acknowledgment provides the infor-
mation that the message was delivered successfully. In contrast thereto, an absent acknowledgment
gives no further information on the state of the message. It could either got discarded due to a disap-
peared recipient, can still be on its way towards the recipient or got delivered but the acknowledgment
is still on its way back towards the sender. In principle, acknowledgment messages drastically increase
the overall traffic.

The proper solution is to generate the acknowledgment at the level of the communication system.
However, this requires support from the communication system since the acknowledgment messages
have to be generated automatically as soon as a message is delivered or is dropped. Then, one always
gets a feedback on the whereabout of a message. Generating the acknowledgment messages without
support from the communication system is tricky since one has to detect that a recipient is not available
anymore. Even redirecting all messages that address no regular recipient towards a component that
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can at least generate acknowledgment messages containing the appropriate status codes is not easily
implemented on top of a communication system.

If messages without a regular recipient get dropped silently by the communication system, one has
no chance to generate the appropriate acknowledgment messages at a level above the communication
system. If one cannot be sure that the recipient still exists, one has to use timeouts when awaiting the
acknowledgment. An absent acknowledgment can now also mean that the message has been delivered
but the sent back acknowledgment returned too late. Then, the message is processed at the recipient
even if the sender experienced a timeout and the acknowledgment arrives anyhow. Thus, in case of a
timeout, assumptions on the state of the recipient can get out of sync which is in contrast to a delivered
policy. Furthermore, one has to take special care to prevent the interaction from getting messed up
by outdated messages. A general problem with timeouts is to properly define the maximum waiting
time. A too large value results in a reduced efficiency caused by far too long waiting times. With a
too small timeout value, still existing recipients can get not accessible anymore.

The second option is to handle disappeared recipients at the level of the protocol used above the
interaction patterns that is inside the communication patterns. This shift allows to map the (C/U) in-
teraction patterns onto the weaker reliable send policy without requiring further glue logic. However,
that is possible only if the interactions of both parts of a communication pattern are protected by an
appropriate protocol as it is the case for the connection oriented protocol presented in section 5.6.6.

5.6.5.7 Converting a Processed Policy into a Delivered Policy

Implementing the (C/U) interaction pattern on top of an interaction model with a processed policy
requires to circumvent the tight coupling introduced by the processed policy. The affected upcalls are
➀, ➂, ➆ and ➈. A server part processing model has to decouple the communication system upcall
from the emulated interaction pattern.

As already pointed out, the decoupling is achieved only if the server part processing models of
the (C/U), (B/U), (B/V), (D/U) and (D/V) interaction patterns do not use threading models of the
communication system. These are unsuited since in case of a processed policy, the client side invo-
cation returns only after the server part thread is released. Thus, in that case, threading models of
the communication system are still useful to decouple concurrent requests such that these are not al-
ready serialized before they get forwarded to the actual processing models. That becomes particularly
important in case of a congestion. In general, each threading model beneath the user level results in
wasted resources as soon as a user level threading model is put on top. With the interaction patterns
(C/U), (B/V) and (D/V), a user level threading model is sufficient to allow the upcall to return imme-
diately to achieve the delivered policy. Since the upcalls are one-way interactions only, active user
level processing models do not block the upcalling thread besides the time needed to complete the
forward. Of course, it depends on the capacity of the user level processing model whether the upcall
still gets blocked until either enough buffer space or further threads are available. With the (B/U) and
the (D/U) interaction patterns, the decoupling could also be performed by the threading model that is
anyway needed inside the emulation.

The server side decoupling mechanism can be inserted at different places as illustrated in fig-
ure 5.74. Depending on the layer the decoupling is performed, different parts of a component get
coupled and are thus affected by a bottleneck in one of the processing units. In case of (A), every
single interaction pattern gets decoupled separately. We first assume that individual upcalls from the
communication system do not share any resources and that every upcall is performed by a separate
thread. Thus, blocking the resources beneath one upcall does not affect any other upcalls. However,
that model results in far too many threads and the upcalling thread of the communication system is
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Figure 5.74: A decoupling mechanism to convert the processed policy into a delivered policy.

even wasted since it is solely used to pass on requests to threads that perform the actual processing.
Since all interaction patterns of a communication pattern are processed independently of each other,
one has to take additional measures to ensure that certain administrative interactions, that are based
on different interaction patterns, get processed in the desired order. The number of threads can be cut
down by performing all upcalls of the communication system by a single thread. Then, however, only
such upcalls are allowed to get blocked that do not at all depend on any communication activities. All
other upcalls need to release that thread so that the communication keeps alive. For these upcalls, one
needs either appropriate buffers that always accept the requests or enough threads that directly accept
the request. In case that the number of threads or that the buffer capacity is limited, one runs the risk
of a deadlock. In case of (B), the interaction patterns of one communication pattern share a decou-
pling mechanism and in case of (C), the decoupling mechanism is even shared by all communication
patterns of a component. Of course, sharing resources can be very efficient but only at the price of
introducing further dependencies that have to be evaluated and checked carefully.

At first glance, buffers in various forms like active queues, for example, appear to be a suitable
mean to decouple the upcalling thread. The communication system upcalls are used to enqueue the re-
quests and thus return immediately in compliance with the desired delivered policy. Further threading
models then operate on the buffer and assign entries to threads in accordance with different policies.
However, a general problem with buffers is to properly reject new entries in case of a shutdown of
an interaction. Since the split protocol is based on one-way interactions, there is no back channel
to report a rejected request. Once the upcall ➀ is invoked, one has to enqueue the request and once
enqueued, the request has to be processed. Otherwise, the processed policy is converted into an unre-
liable send policy only and not into a delivered policy. In case entries should not be accepted anymore,
one must already reject a request at the level of the communication system by closing the upcall ➀ of
the concerned interaction. Addressing the not anymore available upcall then provokes an appropriate
error at the level of the communication system and indicates that the delivery of the request was not
successfully accomplished. The already enqueued entries can now still be processed by the upcalls ➁.
Buffers thus require means to selectively deactivate the upcalls ➀ without influencing upcalls of other
interaction patterns that share the buffer. As soon as the buffer is placed outside a communication
pattern, one needs elaborate interactions via appropriate external interfaces to detect whether there are
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still to be processed entries available. Unfortunately, these modify the generic interface between the
communication patterns and the communication system and are thus not acceptable.

5.6.5.8 Mapping of the (C/U) Interaction Pattern

The (C/U) interaction pattern maps straightly onto the interaction model (G1). That interaction model
already provides an asynchronous interaction and thus the client side invocation always returns after
the request is delivered as marked by ➀ in figure 5.67. Furthermore, server side processing models
affect the reactivity of the server only and do not influence the client part characteristics. The same
holds true for the interaction model (H) in case the back channel can be ignored. Ignoring the back
channel means that no client side invocation is needed to close an interaction that is otherwise kept
open.
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Figure 5.75: The basics of the communication on top of CORBA.
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Figure 5.76: Mapping the (C/U) interaction pattern onto the CORBA oneway model respectively the
CORBA AMI.

With CORBA, one can map the (C/U) interaction patterns onto methods as shown in figures 5.75
and 5.76. Several methods can be pooled into a single object as long as the corresponding interaction
patterns can always be activated or deactivated jointly and never need to be activated or deactivated
individually. The worst case requires one object per (C/U) interaction pattern. The methods have to
be declared as oneway with a sync with server policy to achieve the interaction model (G1). CORBA
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then ensures that in case of deleting the servant object, already received and acknowledged requests
still get processed and do not get lost but further requests are already rejected. Thus, no additional
precautions have to be taken to prevent the delivered policy from getting violated when deleting the
recipient of a request. The CORBA object life cycle management already handles the hidden buffers
in compliance with the delivered policy.

Another option with CORBA is to use the AMI according to the interaction model (H) and to simply
ignore the back channel. As already outlined, the back channel of the AMI cannot be used to replace
the second (C/U) interaction since one then cannot circumvent the restrictions of the synchronous
server side interface with respect to user level processing models.

Since the split protocol handles blocking calls outside the communication system and since the
interaction patterns stay in the CORBA communication system for a very short time only due to the
delivered policy, no support from the communication system is needed to abort client side blocking
calls.
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Figure 5.77: The (C/U) interaction pattern on top of a synchronous communication like the RPC
respectively standard CORBA interactions.

Mapping the (C/U) interaction pattern onto the interaction model (F) requires a decoupling mech-
anism. With both the standard CORBA synchronous interaction and the standard synchronous remote
procedure calls (RPC), the upcalls of the servant object have to be routed via a decoupling mechanism
as shown in figure 5.77 and everything outlined on how to convert a processed policy into a delivered
policy has to be considered. As already explained, the decoupling mechanism can be placed at vari-
ous places but always above the servant object. Again, one has to take care that only those interaction
patterns share a servant object that can be activated or deactivated jointly.

Basically, a shared decoupling mechanism merges requests that are already separated by the one-
method-per-message mapping strategy. A shared decoupling mechanism abandons the advantages of
the CORBA and the RPC mapping. Since one cannot circumvent the message dispatching mechanism,
one could also do with one servant per component that accepts all incoming messages and a single
upcall that forwards them for further decoding and dispatching. Then, however, the successful delivery
of a message can only be interpreted according to a (G2) interaction model since one has already
accepted the upcall before one can detect that the recipient does not exist anymore.

The interaction model (F) provides a back channel that is not used with the mapping of the (C/U)
interaction pattern. The reason is the need for circumventing the synchronous server part interface.
Nevertheless, the back channel could be exploited to provide the acknowledgment whether the request
got accepted by the decoupling mechanism. If multiple upcalls are grouped into a single servant ob-
ject, one could selectively reject upcalls at the level of the decoupling mechanism even if the shared
servant object still existed and thus performed the upcall. The returned status code indicating a re-
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jected upcall has to be treated in the same way as an error from the communication system indicating
that the recipient is not accessible. However, this procedure is applicable only on top of the interaction
model (F) where an unused back channel is available. Furthermore, the required modifications on the
interface of the communication patterns to the communication system are not generic with respect to
other interaction models like the interaction model (E).
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Figure 5.78: The (C/U) interaction pattern on top of mailboxes respectively TCP sockets.

Mapping the (C/U) interaction pattern onto the interaction model (E) requires a mechanism to
convert the characteristic (W) into the characteristic (U). A threading model on top of the mailbox
performs the polling and invokes the appropriate upcalls. A mailbox based messaging system behaves
exactly like a FIFO queue and the polling thread converts the mailbox into an active queue. Again, a
mailbox can be shared by several interaction patterns or even by several communication patterns and
it depends on the placement of the mailbox whether elaborate dispatching mechanisms are needed.
Figure 5.78 illustrates a component central mailbox. Normally, one cannot selectively reject specific
messages from being accepted respectively from being entered into the mailbox. Typically, one has
to shutdown the mailbox to prevent it from accepting further entries. Thus, a mailbox can be shared
only for interaction patterns that can all be shutdown at the same time. A shared mailbox results in
a (G2) interaction model if one only detects that the recipient does not exist anymore after already
having accepted a message.

An important aspect of mailboxes is that all messages are serialized. That becomes a severe prob-
lem as soon as a message of a shared mailbox cannot be forwarded to the corresponding interaction
pattern. Due to the serialization, this also prevents the messages that are enqueued behind from getting
through. As already explained in the context of the shared decoupling mechanisms that are illustrated
in figure 5.74, blocking of shared resources is allowed for those upcalls only that do not at all depend
on further communication activities. For all other upcalls, one either needs enough threads or enough
buffer capacity above the shared mailbox such that one always is able to empty the shared mailbox.

In principle, TCP sockets behave in the same way as mailboxes since a shared TCP socket also ac-
cepts the incoming data before the dispatching mechanism detects that the recipient rejects the request
or is even not available anymore. As well as one mailbox per interaction pattern is not feasible due to
the required resources, one TCP socket per interaction pattern also wastes far too many resources and
is unfeasible, too. A shared socket again results in a (G2) interaction model if messages have to be
discarded due to a disappeared recipient after they have been accepted by the socket.

Mapping the (C/U) interaction pattern onto the interaction model (G2) requires substantial ef-
forts to achieve the delivered policy. Thus, even that the split protocol requires one-way interactions
only, the interaction patterns can still not easily be mapped onto many message based systems. Even
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CORBA oneway methods cannot be used without substantial extensions if the sync with server policy
is not available. However, the interaction model (G2) cannot be ignored since it covers a large fam-
ily of communication systems and depending on the kind of implementation, many other interaction
models also result in a (G2) interaction model.

5.6.5.9 Summary on the Split Protocol

An important demand on the communication patterns is to decouple a service requestor from its
service provider. That includes the asynchronous operation of both parts. In principle, server part
processing models are not allowed to influence the characteristics of a client part user interface. Fur-
thermore, the communication patterns have to be implementable on top of many different commu-
nication systems and the migration between communication systems should not require substantial
modifications inside the communication patterns.

As shown, the naive usage of synchronous interactions can introduce strong couplings and can
even make asynchronous user interfaces obsolete. Inexpertly chosen structures not only require ex-
tensive resources but above all these are wasted with some of the needed user level processing mod-
els. Although the split protocol can be mapped onto many different communication systems due to
its one-way communication, the requirements with respect to decoupling the communicating parts in
combination with the required guarantees of an interaction cannot easily be achieved on all types of
communication systems. Even a buffer can already convert a delivered policy into a reliable send
policy or even into an unreliable send policy.

The split protocol provides an uniform interface between the communication system and the com-
munication patterns and requires one-way interactions only. Additionally, except for the (B/U) and
the (D/U) interaction patterns, user level processing models can be implemented easily. Indeed, the
split protocol remains demanding with respect to the delivered policy. However, as described in the
following section, the connection oriented design of the communication patterns circumvents those
difficulties.



156 CHAPTER 5. THE SMARTSOFT FRAMEWORK

5.6.6 The Communication Protocol of the Communication Patterns

This section presents the connection oriented split protocol that is used inside the communication
patterns. It is based on the split protocol and thus also requires one-way interactions only, possesses
the same lean interface between the communication patterns and the communication system and pro-
vides the same flexibility with respect to user level threading models. The major extension is the
full exploitation of the connection oriented design of the communication patterns. Besides the in-
teractions related to the connection management, all interactions between a service requestor and a
service provider part of a communication pattern are monitored by the connection management of
the communication pattern. Changes to a connection can be made at any time and the connection
management assumes the responsibility for the proper handling of affected interaction patterns. Once
a service requestor is connected to a service provider, both inform each other about getting unreach-
able. Communication patterns always know when their opponent disappears and thus also know which
messages reach their destination and which messages can be awaited. The consequence is that the re-
quirements on the interaction pattern that is used as interface between the communication patterns
and the communication system can be further alleviated. In principle, the connection oriented split
protocol achieves the features of the delivered policy at the level of the communication patterns and
relieves the interface to the communication system from that task.

The big step is that a (C
�

/U) interaction pattern with a reliable send policy instead of a (C/U)
interaction pattern with a delivered policy is now sufficient as interface to the underlying communi-
cation system. That makes it much easier to map the generic interface onto interaction models of
widespread communication systems. The uniform (C

�

/U) interface of the connection oriented split
protocol can even be mapped onto the (G2) interaction model. One does neither require any support
from the communication mechanism to automatically generate acknowledgment messages nor does
one run into the pitfalls of timeout procedures. Since a reliable send policy is now sufficient, de-
coupling mechanisms and buffers that convert a processed policy into a reliable send policy, are not
critical anymore. Above all, most of the administrative interactions do not depend on the decoupling
properties of the (C

�

/U) interaction pattern. Due to the presented locking strategies, they even work
on top of a processed policy without requiring any further decoupling. That significantly simplifies
the implementation of the connection oriented split protocol since the decoupling has to take effect
mainly for the service related interactions and can thus be done by the user level processing models
of the handlers.

5.6.6.1 The Interaction Patterns Required by the Communication Patterns

The interaction patterns that are required by the communication patterns due to their currently as-
signed access modes are summarized in table 5.44. The table lists only those interaction patterns
that are directly related to the user interface of a communication pattern. All communication patterns
require additional (B/U) interaction patterns to perform a connect and a disconnect and a (C/U) in-
teraction pattern to inform connected service requestors about the destruction of a service provider.
The query pattern requires an additional (C/U) interaction to inform the service provider about a dis-
carded request. The push patterns require additional (B/U) interaction patterns to subscribe and to
unsubscribe from service providers and the event pattern to activate and to deactivate events. The
administrative interactions are fully processed inside the communication patterns without any user
interaction or user provided handlers. Thus, those interaction patterns need not to be decoupled from
user influences. The wiring pattern is internally based on the query communication pattern. Since it
is not based on the basic interaction patterns, it is thus not listed in table 5.44.
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communication pattern send query push event

required interaction pattern C/U B/V C/W C/U
D/V C/W

client part of interaction pattern service requestor service requestor service provider service provider
located at (client) (client) (server) (server)
server part of interaction pattern service provider service provider service requestor service requestor
located at (server) (server) (client) (client)

Table 5.44: The interaction patterns required by the communication patterns due to their current
access modes.

The send pattern provides a one-way communication from the service requestor to the service
provider with a delivered policy that decouples the server side processing from the client side invoca-
tion. The access mode of the service requestor conforms to the asynchronous one-way characteristic
(C) and the access mode of the service provider to the synchronous pattern characteristic (U). The
send pattern thus requires the (C/U) interaction pattern with the client part at the service requestor.
The server part (U) executes the user provided handler for commands. The emulation of the (C/U)
interaction pattern requires a single (C

�

/U) interaction pattern.
The query pattern provides a two-way communication from the service requestor to the service

provider with synchronous and asynchronous access modes. The access mode of the service provider
conforms to the asynchronous pattern characteristic (V). The query pattern thus requires the (B/V) and
the (D/V) interaction patterns with the client parts at the service requestor. Each request receives one
answer at maximum and thus the maximum size of the buffer at the client part of the (D/V) interaction
pattern corresponds to the number of simultaneously open requests. The server part (V) executes the
user provided handler for queries. The client part characteristic (B) of the (B/V) interaction pattern is
emulated on top of the client part characteristic (D) of the (D/V) interaction pattern. The emulation of
the (D/V) interaction pattern requires two (C

�

/U) interaction patterns.
The push patterns provide a one-way communication from the service provider to the service

requestor with a delivered policy. Based on a user invocation mode, one can get the latest update or
await the next one without being forced to react to every incoming update. The push patterns thus
require the (C/W) interaction pattern with the client part located at the service provider. Since updates
overwrite each other and since only the latest update is stored, a buffer size of one is sufficient at the
server part of the (C/W) interaction pattern. The emulation of the (C/W) interaction pattern requires
one (C

�

/U) interaction pattern.
The event pattern provides a one-way communication from the service provider to the service

requestor with a delivered policy and both a user invoked and a handler based access mode at the
service requestor. The event pattern thus requires the (C/U) and the (C/W) interaction patterns with
the client parts located at the service provider. Again, the emulation of both interaction patterns share
the same (C

�

/U) interaction pattern. Since an event fires only once or overwrites outdated firings in
case it fires multiple times, the server part buffer size of the (C/W) interaction pattern corresponds
to the number of simultaneously activated events. An optionally provided handler for firing events
is executed by the server part (U). If a handler is registered at the service requestor, only the (C/U)
interaction pattern is active and if no handler is registered, only the (C/W) interaction pattern is active.

5.6.6.2 The (C
�

/U) Interactions of the Communication Patterns

The interactions between both parts of a communication pattern are emulated on top of the (C
�

/U)
interaction pattern. These interactions are listed in table 5.45 and 5.46. Each line corresponds to one
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(C
�

/U) interaction. The format is described by means of the CORBA IDL. The interaction patterns that
are required besides the administrative interactions are marked by D and correspond to the interaction
patterns listed in table 5.44. Administrative interactions are marked by a star and corresponding
request/response pairs of administrative interactions are denoted by R

�
and A

�
, respectively. Figure

5.79 illustrates the (C
�

/U) interaction patterns of the send communication pattern.
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Figure 5.79: The (C
�

/U) interactions of the send communication pattern.

Before one can use a service requestor, it needs to be connected to a service provider. The connec-
tion management consists of the messages R0, A0 and R1 for the connect procedure and the messages
R2 and A2 for the disconnect procedure. The server initiated disconnect message R3 is needed to
properly disconnect service requestors in case that a service provider gets destroyed. The messages
R0, R1 and R2 can be emitted by all service requestors. The acknowledgment messages A0 and A2
and the message R3 can be emitted by all service providers.

The connect message provides the address of the service requestor and a connection identifier to
the service provider. The address enables the service provider to inform the service requestors that
are connected to it in case it gets destroyed. The connection identifier is generated by the service
requestor and uniquely identifies each connect procedure. It is returned by the message A0 so that one
can identify outdated acknowledgments that are possible due to the underlying reliable send policy.
The status simply indicates whether the connect has been accepted or not. A connect cannot be
performed if the service provider is either not yet ready or is already in the process of destruction. In
both cases, service providers do not accept any connections from service requestors. The role of the
discard message and the details of the connect procedure are explained in section 5.6.6.10.

The address of the service requestor is needed with a disconnect to remove the appropriate entry
from the list of connected service requestors. Once the service requestor received the acknowledg-
ment, it knows that from now on no further messages that are related to the just closed connection can
be on their way towards the service requestor. The disconnect procedure does not need an identifier
since there can be no outdated acknowledgments as it is the case with the connect procedure. The
details are again illustrated in section 5.6.6.10.

The server initiated disconnect is invoked if the service provider wants to remove all its service
requestors. That is needed if the service provider gets destroyed. The message R3 contains the
connection identifier that enables the service requestor to check whether the order to get disconnected
is still relevant. The connection identifier prevents a meanwhile newly established connection to
another service provider from getting closed in case that a server initiated disconnect at the service
provider coincides with a disconnect at the service requestor that is immediately followed by a connect
to another service provider. The details are also explained in section 5.6.6.10.
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Pattern Receivable Messages

Send SmartSendClientPattern (Service Requestor):
� A0 oneway void acknowledgmentConnect(in long cid,in long status)
� A2 oneway void acknowledgmentDisconnect()
� R3 oneway void serverInitiatedDisconnect(in long cid)

SmartSendServerPattern (Service Provider):
� R0 oneway void connect(in SmartSendClientPattern address,in long cid)
� R1 oneway void discard(in SmartSendClientPattern address)
� R2 oneway void disconnect(in SmartSendClientPattern address)

(C/U) D oneway void command(in any data)

Query SmartQueryClientPattern (Service Requestor):
� A0 oneway void acknowledgmentConnect(in long cid,in long status)
� A2 oneway void acknowledgmentDisconnect()
� R3 oneway void serverInitiatedDisconnect(in long cid)

(B/V), (D/V) D oneway void answer(in any data,in long qid,in long status)
SmartQueryServerPattern (Service Provider):

� R0 oneway void connect(in SmartQueryClientPattern address,in long cid)
� R1 oneway void discard(in SmartQueryClientPattern address)
� R2 oneway void disconnect(in SmartQueryClientPattern address)
� R4 oneway void requestDiscard(in SmartQueryClientPattern address,in long qid)

(B/V), (D/V) D oneway void request(in any data,in SmartQueryClientPattern address,in long qid)

Push Newest SmartPushNewestClientPattern (Service Requestor):
� A0 oneway void acknowledgmentConnect(in long cid,in long status)
� A2 oneway void acknowledgmentDisconnect()
� R3 oneway void serverInitiatedDisconnect(in long cid)

(C/W) D oneway void update(in any data,in long sid)
SmartPushNewestServerPattern (Service Provider):

� R0 oneway void connect(in SmartPushNewestClientPattern address,in long cid)
� R1 oneway void discard(in SmartPushNewestClientPattern address)
� R2 oneway void disconnect(in SmartPushNewestClientPattern address)
� R4 oneway void subscribe(in SmartPushNewestClientPattern address,in long sid)
� R5 oneway void unsubscribe(in SmartPushNewestClientPattern address)

Push Timed SmartPushTimedClientPattern (Service Requestor):
� A0 oneway void acknowledgmentConnect(in long cid,in long status)
� A2 oneway void acknowledgmentDisconnect()
� R3 oneway void serverInitiatedDisconnect(in long cid)
� A4 oneway void acknowledgmentSubscribe(in long active)
� A6 oneway void serverInformation(in double cycle,in long active)
� R7 oneway void activationState(in long active)

(C/W) D oneway void update(in any data,in long sid)
SmartPushTimedServerPattern (Service Provider):

� R0 oneway void connect(in SmartPushTimedClientPattern address,in long cid)
� R1 oneway void discard(in SmartPushTimedClientPattern address)
� R2 oneway void disconnect(in SmartPushTimedClientPattern address)
� R4 oneway void subscribe(in SmartPushTimedClientPattern address,in long rate,in long sid)
� R5 oneway void unsubscribe(in SmartPushTimedClientPattern address)
� R6 oneway void getServerInformation()

Table 5.45: The messages used internally by the communication patterns - part one.
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Pattern Receivable Messages

Event SmartEventClientPattern (Service Requestor):
� A0 oneway void acknowledgmentConnect(in long cid,in long status)
� A2 oneway void acknowledgmentDisconnect()
� R3 oneway void serverInitiatedDisconnect(in long cid)
� A4 oneway void acknowledgmentActivate(in long status)

(C/U), (C/W) D oneway void event(in any data,in long aid)
SmartEventServerPattern (Service Provider):

� R0 oneway void connect(in SmartEventClientPattern address,in long cid)
� R1 oneway void discard(in SmartEventClientPattern address)
� R2 oneway void disconnect(in SmartEventClientPattern address)
� R4 oneway void activate(in SmartEventClientPattern address,in long mode,

in long aid,in any parameter)
� R5 oneway void deactivate(in SmartEventClientPattern address,in long aid)

Table 5.46: The messages used internally by the communication patterns - part two.

The send pattern requires the standard administrative interactions only. The command message
of the send pattern carries the marshalled representation of the communication object and requires
no further arguments. Since the send pattern does not provide any back channel, there is no need to
identify the service requestor that sent the command message.

The (B/V) and (D/V) interaction patterns of the query communication pattern are composed out
of the request and the answer message. The request contains the marshalled communication object,
the address of the service requestor and the query identifier. The address is needed to be able to return
the answer to the correct service requestor. The query identifier is unique at the service requestor
and allows to unambiguously assign answers to pending requests and also allows to identify answers
no longer needed. Thus, the query identifier is returned with the answer message that also contains
the marshalled communication object for the answer. The status argument of the answer message
indicates whether it contains a valid response. That is used by the server side discard method that can
close a request without providing a valid answer in case the server is overloaded. The request discard
is used to inform the service provider about a discarded request. It contains the address of the service
requestor and the query identifier to uniquely identify the request to be discarded.

The push patterns require further administrative interactions to subscribe for updates and to un-
subscribe. The address of the service requestor is required to identify the service requestor that is
changing its subscription state. The subscribe message R4 of the push timed pattern contains another
parameter which specifies to get every n-th update only. The parameter of its acknowledgment mes-
sage A4 indicates whether the server is currently active. The acknowledgment A4 is not needed with
the push newest pattern. The cycle time of the push timed server and its state can also be obtained
by the R6/A6 interaction. The R7 message is used by the push timed server to inform its subscribed
clients about a state change. The update message distributes updates to subscribed service requestors
and contains the marshalled representation of the communication object and the subscription identifier
that was provided by the subscribe message. The subscription identifier allows to identify outdated
update messages.

The event pattern requires an event activation and deactivation. The event activation provides
the address of the service requestor, the activation mode, the activation identifier and the marshalled
representation of the communication object for the activation parameters ! . The activation mode
allows the service provider to already inhibit single activations from firing multiple times to save
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bandwidth. The activation identifier is unique at the service requestor and is returned with the event
message besides the marshalled representation of the communication object

�
for the firing activation.

It allows the service requestor to correctly assign incoming event messages to activations and it also
allows to identify event messages not needed anymore. Of course, the deactivation also requires
the activation identifier. The activation message R4 is acknowledged by A4 to know whether the
activation was accepted by the server. Otherwise, the server would not be able to reject activations in
case there is, for example, no more space to store another activation.

5.6.6.3 The Interface Objects and the Communication Pattern Interface

The generic structure of the connection between the communication patterns and the underlying com-
munication system is shown in figure 5.80. So-called interface objects mediate between the commu-
nication system and the communication patterns. The task of an interface object is to map the (C

�

/U)
interaction patterns onto the communication system, thereby performing all the required adjustments
and conversions. The interface objects are managed by the communication patterns and are typically
implemented as part of the communication patterns.
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Figure 5.80: The generic structure of the connection between the communication patterns and the
communication system.

The interface object ➁ is generated with the creation of the service requestor. It contains an
interface to the communication system with a unique address such that the service requestor can
receive messages. All method arguments besides the communication objects are first demarshalled
and are converted into the format that is used at the callback interface of the communication patterns
➅. As soon as a service requestor gets connected to a service provider, it generates the interface object
➀ which performs all the marshalling ➄ for the outgoing messages. The communication objects are
already marshalled when they are forwarded from the communication pattern to the interface object.
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The interface object ➀ is destroyed with a disconnect and the interface object ➁ gets destroyed with a
destruction of the service requestor.

The interface object ➃ is generated with the creation of the service provider and provides a unique
address over which all messages from all service requestors are handled. The service provider gen-
erates a separate interface object ➂ for each connected service requestor. The interface objects ➂ are
destructed as soon as the corresponding service requestor gets disconnected. The interface object ➃

gets destructed with the shutdown of the service provider.
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Figure 5.81: The interface objects of the communication patterns with an object based middleware.

Figure 5.81 illustrates the interface objects with an object based middleware like CORBA or re-
mote procedure calls. Each message is represented by a member function of a remotely callable
object. Sending a message is calling a member function of a remote object via the appropriate stub
and receiving a message corresponds to executing the corresponding member function at the servant
object. The implementations of the methods of the servant objects provide the required adjustments
and invoke the upcall interface of the communication pattern. The interface objects for outgoing mes-
sages provide the same methods as the stubs, perform the adjustments of the parameters and invoke
the corresponding method of the stub.

Service Requestor

− handlerForAcknowledgmentConnect(...):void [static]
− handlerForAcknowledgmentDisconnect():void [static]
− handlerForServerInitiatedDisconnect(...):void [static]

− handlerForConnect(...):void [static]
− handlerForDiscard(...):void [static]

... ...

Service Provider

− handlerForDisconnect(...):void [static]

Figure 5.82: Implementation details of the upcall interface of the communication patterns.

Figure 5.82 shows some details of the implementation of the upcall interface of the communication
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patterns. The communication patterns provide handlers for all incoming messages. The arguments
of the handler functions correspond to the arguments of the messages. However, the argument list is
extended by a this-pointer to the communication pattern instance as first argument. The void-casted
this-pointer to the communication pattern instance as well as the addresses of its callback methods are
provided with the constructor of the interface object. The this-pointer is needed inside the handler to
grant access to the communication pattern instance since the upcall handlers are implemented as static
member functions. The reason for this are more generic interface objects that do not depend on the
template bindings of the communication patterns. That definitely simplifies the handling of pointers to
callback methods. With the CORBA based implementation, the server and the client objects with their
corresponding stubs are automatically generated from the IDL description of the receivable messages
as illustrated in figure 5.83.

Server Stub Client Object Client Stub Server Object

ORB

static callback methods (first
argument always this−pointer)

smart<X>Pattern.idl

smart<X>ClientPattern.cc / hh

smart<X>ServerPattern.cc / hh

...smart<X>.hh / th smart<X>.hh / th

B

C

communication pattern (requestor) communication pattern (provider)

as listed in tables 5.45 and 5.46

CORBA object implementation
provides interface C

Figure 5.83: The interface objects with CORBA.
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Figure 5.84: The interface objects of the communication patterns with a message based middleware.
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Figure 5.84 illustrates the interface objects with a message based communication system that can
be either a mailbox based communication system or even a socket based communication mechanism.
In contrast to the object based approaches, one now needs a message dispatching mechanism. A
message based approach is normally based on a reactor pattern [138] to accept incoming messages
and to dispatch and forward them to the appropriate handlers of the communication patterns.

The servant object respectively the mailbox or the socket that is contained in the interface objects
➁ and ➃ is shared by all interaction patterns of a communication pattern. The reasons why this does
not impose any restrictions and what kind of threading models are needed within the interface objects
is explained after the locking mechanisms and their interactions are introduced in sections 5.6.6.6,
5.6.6.7 and 5.6.6.8.

5.6.6.4 The Addressing Scheme

The internally used addressing scheme has to implement the naming of services described in section
5.4.5. The overall scheme is presented in figure 5.85. The naming service operates at the level of
services and translates the general naming scheme into addresses for direct communication. Names
of services have to be unique only within the scope of a component since the name of a service is
always additionally tagged by the name of the component. The user visible naming scheme addresses
services by a tuple

�
component name, service name

�
consisting of the user provided name of the

component and the user provided name of the service. Unique names of services are necessary to
distinguish different services composed of the same communication pattern instantiated by the same
communication objects. Inside a communication pattern, this tuple is extended by

�
pattern type

�

followed by any number of names of communication objects. The pattern type identifier is either send,
query, push newest, push timed or event and denotes the communication pattern type. As explained
below in section 5.6.7.7, the wiring pattern internally uses the query pattern and does therefore not
constitute its own pattern type. The list of communication object names comprises the user defined
names of the communication objects that bind the communication pattern template. The name of
a communication object is provided to the communication pattern by the name member function of
the framework interface of a communication object. A service provider uses the extended name to
register its address at the name service. A service requestor can get the address of a service provider
by composing the same extended name and asking the name service for the corresponding address.
The name service only returns the address of a compatible service since otherwise the extended name
used to look up the address was already composed wrongly. If the name service has no record of the
provided extended name then there is no such service provider available.

The used naming scheme ensures that the name service only returns addresses of compatible ser-
vice providers. Compatibility requires a service provider to match the type of the communication
pattern and the names of the involved communication objects. Since those are coded in the extended
name, the name service can only find compatible services. A service requestor can therefore never
connect to an incompatible service provider and a component always only receives messages of ex-
pected types. On top of the object based communication systems, this makes sure that the stub object
always matches its implementation inside its communication pattern counterpart.

Service requestors do not need to be made public and are therefore not registered at the name
service. Instead, each connect of a service requestor provides its address to the service provider in
order to receive messages that are sent back from the service provider. Thus, a service requestor has
its private address and additionally holds the address of a service provider if it is connected to one. A
service provider possesses a public address and holds a list of the addresses of its connected service
requestors.
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Figure 5.85: The general addressing scheme.

Object Based Middleware The general addressing scheme on top of an object based middleware
is illustrated by means of CORBA. With an object based middleware, there always exists a one-to-
one relation between a servant object and its object reference. The object reference provides the
unique address of the servants inside the interface objects ➁ and ➃ shown in figure 5.81 and it already
represents the fully decoded extended name since each message type is mapped to a separate member
function. Possessing the object reference allows to access the member functions of the corresponding
servant and calling one of the servant’s member functions corresponds to sending that message to the
proper component and service. The implementation of the addressing scheme on top of object based
middleware is summarized in figure 5.86.

The service provider registers the reference of the servant object of its interface object ➃ at the
name service using the extended naming scheme. The object reference needed by the interface object
➂ is obtained from the service requestor with a connect. A connect transmits the object reference of
the client object of ➁ to the service provider. The object reference needed by the interface object ➀ is
obtained from the name service when performing a connect to a service provider.

The chosen implementation of the general addressing scheme allows neither to connect to incom-
patible services nor to send inappropriate messages from a pattern to its opponent. The first property
is a result of having access to middleware objects only that either have been provided by the name
service and thus represent a compatible service provider or that have been provided with the connect
and thus represent a compatible service requestor. The second property holds true due to the fact that
all member functions correspond to valid messages and that other member functions are not available.
Furthermore, messages can never be delivered to an old instance of a servant object since each newly
started service requestor and service provider possesses a new servant object with a unique identity.
Normally, that feature holds true with every object based middleware. Thus, for example, destroying
a service provider and restarting it very fast is always detected since the object reference is not valid
anymore. Therefore, one never wrongly continues to interact after all the states in either the service
provider or the service requestor were lost. The new instance, of course, has a different address but is
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Figure 5.86: The addressing scheme on top of CORBA.

registered with the same extended name at the name service.

Message Based Middleware The general addressing scheme on top of message based middleware
is illustrated by means of TCP sockets. Again, the entries at the name service are organized such
that only addresses of compatible services are returned. In contrast to the object based middleware
systems, the process of dispatching messages is now visible to the framework builder. Thus, the
address comprises two extensions as shown in figure 5.87.

The first extension is the service identifier. After a socket address got released, it can be reused by
another interface object on the same host. Thus, the socket address is not sufficient to unambiguously
identify an interface object and one needs an identifier that is unique host-wide. Some operating sys-
tems already provide a system call to generate unique identifiers. In all other cases, the concatenation
of the memory address of the interface object and its creation time is a suitable identifier.

The second extension is the message type that identifies the handler to be called inside the interface
object. The combined evaluation of the service identifier and the message type uniquely identifies the
correct pattern instance and message handler.
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Figure 5.87: The addressing scheme on top of TCP sockets.

5.6.6.5 The Pattern Internal Handling of Blocking Calls

Interaction patterns require means to efficiently handle blocking method based interfaces that wait for
an outstanding answer or that await an asynchronous notification. Blocking calls are not allowed to
waste processing time during blocking and blocking calls have to be abortable. Both, the assignment
of responses to open requests and the management of whether blocking is allowed is based on a state
automaton. Thus, one requires means to coordinate concurrent access to the state automaton and to
properly notify suspended calls about performed state transitions.

All those requirements can be met by using a monitor [138]. The monitor coordinates and protects
access to the state automaton. A monitor is also known as thread-safe passive object since a monitor
does not have its own thread of execution. This makes a monitor very resource friendly. With a
monitor, no processing time is needed when awaiting a specific state of the state automaton. A monitor
allows to perform state changes while other threads are blocked on the state automaton. Concurrent
requests from multiple threads are serialized and require no further arrangements outside the monitor.

A monitor is needed for those parts of the interaction patterns that provide a user invoked method
that gets blocked until a request or a response is available. Thus, a monitor is required for the client
part characteristics (B) and (D) and the server part characteristic (W). With the (B/U), (B/V), (D/U)
and (D/V) interaction patterns, the monitor is placed at the client part. It awaits the response message
and ensures that the blocked client side method can be aborted. In case of the (D/U) and (D/V)
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interaction patterns, the blocking method is the response method. With the (C/W) interaction pattern,
the monitor is placed at the server part to manage the blocking invocation method.

:Task :Task :Monitor

:Monitor Lock :Monitor CV

blocking condition
evaluates to false,
thus return; otherwise
reinvoke wait()

blocking condition
evaluates to true,
thus invoke wait()

do some work

do some work

blocking condition
evaluates to false,
thus return; otherwise
invoke wait()

acquire()
method_2()

wait()

release()
suspend wait

acquire()
method_1()

release()

broadcast()

acquire()
resume wait()

release()

acquire()
method_2()

resume wait

release()

1..1

1..1

1..11..1

1..1

1..1

Figure 5.88: The interaction of the user member functions with the monitor class.

The general scheme of a monitor is shown in figure 5.88. According to [135], a monitor syn-
chronizes method execution to ensure that only one method runs within an object at a time and thus
makes sure that simultaneously accessing the object by two or more threads causes no conflicts. This
is achieved by a monitor lock. Each synchronized method first acquires the lock before performing
any activity and releases the lock just before leaving the method. A thread is blocked when it calls a
monitor method while another thread has already entered the monitor. The blocked thread is woken
up when the active thread exits the monitor. The monitor lock is based on a recursive thread mutex
which allows recursive calls to synchronized member functions.

A monitor schedules its synchronized methods cooperatively. Synchronized methods use monitor
conditions to determine the circumstances under which they should suspend or resume their process-
ing. If a synchronized method must block, it can wait on one of its monitor conditions which of course
requires to temporarily leave the locked section [69]. This automatically releases the monitor lock and
allows other threads to proceed while waiting.

A synchronized method of a monitor can notify one or all methods waiting for the monitor con-
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dition. A notified method automatically reacquires the lock and resumes execution. Normally, one
first checks the new state of the monitor condition and decides whether to wait again or to proceed.
Leaving the method releases the reacquired lock. In case all waiting methods got notified, one after
the other is executed and is synchronized by the lock. The notification mechanism and the evaluation
of the monitor condition is based on a condition variable whose mutex is the monitor lock. Waits
therefore block on the condition variable and changes to shared data that are protected by the monitor
are announced by a signal on the condition variable. A signal is effective to currently waiting calls
only and is not memorized. Everything to be memorized is stored in the state automaton. The con-
dition variable ensures that no state change is missed between testing the state automaton and getting
suspended by the wait member function.

A standard monitor signals every state change and always wakes up all suspended threads. All
threads can test their individual blocking condition. They just reinvoke the wait if the state is not yet
reached that is required to resume processing. Thus, with every state change, a lot of time consuming
task switches are wasted for those threads that can still not continue with their work and that again get
suspended.

In contrast thereto, the presented monitors signal only those state changes that actually allow a
suspended member function to resume its processing. This avoids unnecessary task switches and im-
proves the overall performance. The test on whether to wake up a wait is shifted from the individual
blocking condition of the wait towards those member functions that perform a state transition. How-
ever, that is possible only if no blocking member function requires an individual blocking condition.
It makes sense only if a once resumed wait never needs to be reinvoked. Both preconditions hold
true for all the monitors that are required inside the communication patterns and these properties are
illustrated in detail with the more complex monitors described in section 5.6.7.

In case of the monitors of the communication patterns, member functions of a monitor get blocked
on the state automaton only to await the next message of the monitored interaction. The crucial point
is that all concurrent and blocked calls of the monitor are related to the very same interaction. They
all see the same singular state automaton and all concurrent and blocked calls await the very same
message. Thus, once that message arrived, further blocking is obsolete for all the blocked calls.
Therefore, once a blocked call is resumed due to having reached the awaited state, it never reinvokes
the wait again. Since all blocked calls work on the same state automaton and await the same message,
they are all released in the same way and independently of an individual blocking condition.

Blocked calls are also awakened independently of an individual blocking condition in case that a
transition is performed into another state than the awaited one. Since all suspended calls are related to
the very same interaction, they all have to get informed about the newly reached state which requires
to resume all the waits. However, the crucial point now is that a once resumed wait never needs to be
reinvoked even though the blocked member function got resumed in the not awaited state. That holds
true since the state automatons of the monitors of the communication patterns are naturally structured
such that getting resumed in a state that is different to the awaited one is always either tantamount to
the case that the awaited message cannot be received anymore or that it is obsolete or is tantamount
to the case that no blocking is allowed anymore. In all cases, one does not need to reinvoke the wait
from inside the method call and thus again, no individual blocking conditions are required.

The outcome of this is the following rule of when to invoke a broadcast on the condition variable
of the monitor. A wait blocks in those states only that can still expect the awaited message. All
transitions from blocking to non-blocking states have to broadcast a signal. That is since a blocking
method would otherwise not be able to follow the state transition into the non-blocking state. For state
transitions leading from a blocking state into the same or another blocking state, only those transitions
emit a broadcast that correspond to the arrival of a message. Even if one awakes in a blocking state,
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the arrival of a message denotes that all pending methods have to return. For example, one can awake
in the same blocking state when waiting for the next update. Of course, one has to return with the
update instead of reinvoking the wait.

An important issue with condition variables is their exact semantics. Normally, condition variables
are assumed to implement a Hoare-style semantics. That means that the signaller gives up control
immediately to the thread being woken up. However, nearly all practical implementations of condition
variables provide a Mesa-style semantics only since that is much easier to implement. The important
difference is that with a Mesa-style semantics, the woken up thread is simply put on the ready list.
The consequence of using a Mesa-style semantics is that some other thread can acquire the lock and
can change data structures after the wait got signalled and before it resumes processing. The problem
then is that the awaited condition might not be true anymore and that one normally would decide to
reinvoke the wait. Although the awaited state was true meanwhile, it can thus be missed. Of course,
the presented monitors can also miss states but since they never reinvoke a wait they never miss the
information that the awaited state was reached. Thus, the signalling policy used for the monitors of
the interaction patterns circumvents the drawbacks of the Mesa-style implementation since one never
reinvokes a wait.

The Monitor Base Class Figure 5.89 shows the class diagram of the monitor base class. It provides
the basic infrastructure only and derived monitor classes solely add individual data structures that
need to be protected by the monitor. In contrast to standard monitors, the acquire and release methods
provide access to the monitor lock and the wait and broadcast methods provide access to the monitor
condition variable. That allows to apply the monitor without shifting all the activities to be coordinated
into a member function of the monitor. In particular with the monitors of the interaction patterns, this
makes it much easier to access the infrastructure of the communication pattern from inside an activity
that needs to be protected by a monitor. Otherwise, one would have to provide appropriate references
to the communication pattern infrastructure with each method of the monitor. Of course, prior to
calling the wait respectively the broadcast member function, one has to acquire the monitor lock and
after returning from these functions, one has to release the lock.

componentBlockingFlag : bool
userBlockingFlag : bool

#
#

Monitor

#
Monitor_Lock : Recursive_Mutex#
Monitor_CV(Monitor_Lock) : Condition_Variable

blockingComponent(const bool) : void throw()
blockingUser(const bool) : void throw()

+
+

acquire() : void throw()
+
+
+

blockingIndicator() : bool throw()+

+

wait() : void throw() [virtual]

broadcast() : void throw()
release() : void throw()

Figure 5.89: The class diagram of the monitor base class.

Common to all monitors are the two separate blocking flags that are combined by a logical and to
form the blocking indicator. Blocking is allowed only if the blocking indicator evaluates to true. The
user blocking flag is used by the blocking member function that is part of the user interface of each
service requestor part of a communication pattern. The component blocking flag is used to implement
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the blocking mode of the component management that is effective component wide. Both blocking
flags are initialized to true. As illustrated in figure 5.90, the methods to modify the blocking flags and
those to get the state of the blocking indicator are already protected by the monitor lock. Independently
of the individual state automaton, all currently blocking waits are aborted and all further calls to
the wait member function return immediately and are not blocked as soon as the blocking indicator
evaluates to false. A broadcast is emitted only if the state of the blocking indicator switches from true
to false since that is the only case where already blocked methods have to be aborted. A broadcast
is not required with all other state transitions since then blocking either is allowed or has already not
been allowed. In the latter case, there are no pending waits since they all were aborted with the state
change to the false state and since no new waits are invoked as long as the blocking indicator evaluates
to false.
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Figure 5.90: The sequence diagrams of the methods of the monitor base class.
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Figure 5.91: The simplified representation of applying the monitor.

Figure 5.91 shows the simplified representation of a monitor that is henceforth used in the se-
quence diagrams. A task performs some work ➀ and acquires the monitor lock by calling the acquire
method ➁ as soon as it enters the scope of the monitor. The scope of the monitor is entered either
when accessing data structures that are protected by the monitor or when entering a critical section
that can be entered only under the supervision of the monitor. As soon as the monitor lock is acquired,
no concurrent state change can occur and no other method belonging to the scope of the monitor
is executed and one can safely operate on the monitor protected data structures ➂. Calling the wait
atomically releases the lock ➃ and suspends the task. As soon as the monitor gets signalled, the task
is resumed and reacquires the lock ➄. Again, all other activities that enter the scope of the monitor
are blocked meanwhile ➅ and are resumed earliest after the lock is released ➆. Of course, in ➃, one
checks whether to invoke the wait and in ➄, one checks the current state in which one ended up. With
the monitors used by the interaction patterns, one never reinvokes the wait in ➄. The figure on the
right shows the simplified representation of the standard sequence of entering the scope of the mon-
itor. One first acquires the lock to be allowed to continue and to be allowed to access and to modify
➇ the protected data structures. If a state change requires to release blocked calls, one can emit a
broadcast ➈ before one releases the lock.

The Simplified Monitor of the Administrative (B/U) Interaction Administrative interactions that
are based on the (B/U) interaction pattern require a monitor to implement the client part character-
istic (B). However, they can already do without an elaborated state automaton. A mutex inside the
communication pattern already ensures that always only one administrative interaction is active. Fur-
thermore, an administrative interaction can always be completed and does not need to be abortable.
Thus, no complex state automaton is required with that monitor.

The simplified monitor of the administrative (B/U) interactions is shown in figure 5.92. Prior
to sending the request, one invokes the prepare method to set an identifier that allows to uniquely
identify the awaited response. It is important to note that sending the request is not protected by the
monitor lock. As explained below, not holding the monitor lock while sending the request is the key
why even on top of a synchronous communication mechanism, the administrative interactions do not
require further decoupling mechanisms. After having sent the request, one invokes the wait method
that either returns after a timeout occurred or after the expected response arrived. The timeout is solely
used with the connect of the service requestor. The administrative interactions do not use the blocking
flags of the monitor. The upcall, that provides the response, acquires the monitor lock and checks the
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− acquire monitor lock

− set identifier
− release monitor lock

− set state to and blocking flags to trueawait
− no broadcast required when setting the await state since

monitor is never in use when prepare method is invoked

− if blocking indicator is true and state is await then wait
− keep monitor lock when returning to allow state check after

returning into user space

− monitor lock must already be acquired

Monitor

identifier : Identifier+
+

Administrative Monitor

state : automaton
statusA0 : long+

{await, timeout, ok}

prepare(:Identifier) : void throw()+
wait(:const Timeout) : void throw()+

Figure 5.92: The class diagram of the simplified monitor used inside the administrative (B/U) inter-
action pattern. It is derived from the monitor base class.

identifier. If the identifier matches the expected one, the upcall sets the state automaton to ok, stores
the received arguments such that they are protected by the monitor and emits a broadcast. Finally,
the monitor lock is released. An administrative interaction never receives more than one response and
thus no response can get missed due to overwriting. Due to the unique identifier, no late answer can
mess up an interaction and since the identifier is set prior to sending the request, one can never miss
a response that arrives before the wait is invoked even when the monitor lock is released before the
wait is invoked.

The administrative monitor also holds the variables that are needed to handover returned values
from the response message to the communication pattern. The statusA0 attribute is used by the A0
message to return the status whether the connect was accepted or not.

5.6.6.6 The Locking Strategies of the Communication Patterns

A crucial role inside the communication patterns is played by the locking mechanisms. These have
to ensure that no deadlocks can occur and that all concurrently active interaction patterns never inter-
fere. The internals of an interaction pattern are coordinated by a monitor. However, the connection
oriented split protocol additionally requires mechanisms to coordinate the administrative interactions
and to coordinate them with the interaction patterns that implement the actual service. Only the proper
interaction of the administrative interaction patterns with the service related interaction patterns en-
sures that the latter show the specified characteristics even on top of (C

�

/U) interaction patterns.
The locking mechanisms are designed such that the administrative interactions from a service

requestor to a service provider do not depend on any decoupling. Thus, they even work on top of a
processed policy and a delivered policy needs not to be emulated for them in case that only a processed
policy is available which makes their implementation very efficient. The locking mechanisms are
introduced on top of a delivered policy and are then reconsidered on top of a processed policy.

The Administrative (B/U) Interaction The overall locking strategy is explained by means of the
administrative (B/U) interaction. As already mentioned, all administrative interactions are serialized
such that they are never active concurrently. The serialization is mandatory since it makes no sense,
for example, to invoke a subscribe while an unsubscribe or a disconnect is still active. The differ-
ence between administrative and service related interactions is that always only one administrative
interaction is active. Thus, both types of interactions differ with respect to releasing locks.

Figure 5.93 illustrates an administrative (B/U) interaction from the service requestor to the service
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Figure 5.93: Administrative (B/U) interaction from the service requestor to the service provider (de-
livered policy).

provider. An � in the activation box of the service requestor denotes the access to the monitor of the
administrative interaction. The top most � denotes the prepare method that is invoked prior to the
send ➐. The � in the upcall ➑ is the simplified representation of the sequence denoted by � in figure
5.91. Finally, ➒ is the simplified representation of releasing the monitor lock after it is not needed
anymore. The monitor lock was acquired automatically with resuming the activity after the wait.

At the service requestor part of a communication pattern, the mutex M1 protects the connec-
tion related status flags like the connected and the subscribed flag and it serializes the administrative
interactions so that these cannot get interleaved and mess up the connection status. Thus, every ad-
ministrative interaction must always hold the mutex M1 while being executed. Of course, the mutex
M1 can also be acquired to inhibit any connection related changes since no administrative interaction
gets executed then. Holding the mutex M1 protects the connection to the service provider from being
modified while an interaction pattern of the service requestor accesses the service provider. The mutex
M10 performs the analogous task at the service provider part of a communication pattern. It must be
hold either if a connected service requestor is accessed or if the list of connected service requestors is
modified.

Since always only one administrative interaction can be active, the administrative (B/U) interac-
tions are based on a static monitor instance that could even be shared by all administrative interactions.
In contrast thereto, a service related interaction can be invoked by any number of concurrent threads.
For example, each not yet completed query can be seen as a separate instance of the appropriate inter-
action pattern. Of course, all queries are handled by the same interaction pattern instance but they all
possess their own monitor instance. Thus, the monitor instances of the service related interactions are
generated dynamically. The administrative interactions always have to be able to notify the currently
active service related interactions about connection related state changes. Therefore, each communi-
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cation pattern that has to handle dynamically generated monitor instances, possesses a list of monitors.
At the service requestor the list of monitors is protected by the mutex M2. At the service provider, the
mutex M10 also undertakes the task of protecting the list of monitors. For reasons that get clear with
the subsequent explanations on the locking strategy, the mutex M1 cannot be used to protect the list
of monitors at the service requestor.

The dynamically generated monitor instances have to be managed by smart pointers [11, 36].
The reason is that several threads can be blocked on one monitor instance and one never knows
when all threads are released such that the monitor instance is not needed anymore. That problem is
further intensified by the Mesa-style semantics of the condition variables. With smart pointers, the
dynamically generated monitor instance is destroyed automatically as soon as the last shared pointer
pointing to the monitor instance is deleted and pointers to monitors keep valid as long as there is at
least one remaining reference.

The administrative (B/U) interaction shown in figure 5.93 is now explained in detail. At first, the
mutex M1 ➀ is acquired to ensure that no other administrative interaction is executed concurrently
and that the interaction starts only after all sending activities of the interaction patterns of the service
requestor are completed ➊. While holding the mutex M2 ➁, one can iterate through the list of monitors
to access the dynamically generated monitor instances of the currently active service related interac-
tions. With a disconnect, for example, one has to appropriately set the state automatons of the service
related interactions to notify the pending interactions about the connection related state changes. In
case of a disconnect, for example, these have to know that the expected response cannot be received
anymore. The next steps are to first call the prepare method of the monitor of the administrative (B/U)
interaction, to then send the request message ➂ and to finally invoke the wait ➃.

As explained below, it is mandatory that one neither holds the mutex M2 nor the lock of the mon-
itor of the administrative interaction when performing the send. Even if the monitor lock is released
for the send, no administrative interaction can be invoked concurrently so that no other administra-
tive interaction than the currently executed one accesses the monitor. Thus, although the monitor is
accessible, its state does not get messed up by concurrent administrative interactions.

At the service provider, the upcall performs some work and acquires the mutex M10 ➄ as soon
as either the list of connected service requestors needs to be accessed or a response is to be sent ➅.
The list of monitors again contains the dynamically generated monitor instances of the service related
interactions. With a disconnect, for example, one needs to iterate through the list of monitors to notify
affected service related interactions by appropriately setting their state automatons. In case of the
query communication pattern, for example, the not yet answered requests of a service requestor, that
gets disconnected, need not to be processed anymore. In contrast to the service requestor part, even
the monitor lock can be hold while performing the send ➅. Again, the reason why this holds true gets
clear with the subsequent explanations on the locking strategy.

At the service requestor, the upcall for the response ➇ accesses the monitor belonging to the
interaction pattern. If the identifier of the received response matches the expected one, the blocked
administrative (B/U) interaction resumes processing ➈. The upcall does not need to acquire the mutex
M1 since it leaves the modification of any items that are protected by the mutex M1 to the resumed
thread. Of course, the upcall ➇ can acquire the mutex M2. The resumed method can acquire the
mutex M2 only after it released the monitor lock since one always has to take into account the locking
order.

The ordering of the mutexes is fixed to prevent from deadlocks and one always has to acquire
them in the appropriate order. At the service requestor, that order is M1 first, then M2 and finally
a monitor lock. Besides the mutex M1, no locks must be hold while performing a send or while
awaiting a response. The monitor locks are automatically released when invoking the wait. Thus,
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before acquiring a monitor lock that is automatically released by a wait, one always has to release the
mutex M2 first. At the service provider, the locks are ordered in the same way that is one first has to
acquire the mutex M10 and then a monitor lock. In contrast to the service requestor, both the mutex
M10 and a monitor lock can be hold while performing a send. In contrast to the mutex M1, however,
the mutex M10 must never be hold while awaiting a response as is explained now.

In principle, the availability of the mutex M2 never depends on the availability of any communi-
cation activities. It is never hold while awaiting a response or while waiting until a message can be
sent. Since the mutex M1 at the service requestor is never acquired by any upcall ➋, all upcalls at
the service requestor can always be completed even if the mutex M1 is hold due to an administrative
(B/U) interaction that is awaiting its response. Thus, all sending activities from the service provider
to the service requestor ➅ can always be completed independently of the interaction they belong to
and thus, sooner or later, the mutex M10 gets released. As soon as the mutex M10 is released, the
upcalls at the service provider ➌, that require the mutex M10, can proceed. Thus, the upcall of the
administrative (B/U) interaction also gets through and invokes the send ➅ that completes the interac-
tion ➈. Even if the upcalls at the service provider ➌ get temporarily blocked on the mutex M10, that
causes no deadlocks since the release of the mutex M10 never depends on the capacity of the service
provider to process further upcalls.

Administrative (B/U) interactions always have the client part (B) at the service requestor of the
communication pattern and the server part (U) at the service provider. The connection oriented split
protocol never requires an administrative (B/U) interaction from a service provider to a service re-
questor. That is the crucial factor why the administrative (B/U) interaction can never cause a deadlock.
If an administrative (B/U) interaction was directed from the service provider to a service requestor, the
following deadlock situation would occur. A service requestor invokes an administrative (B/U) inter-
action and holds and blocks the mutex M1 until the corresponding response arrives. Since the mutex
M1 is locked, no other message can leave the service requestor meanwhile. At the same time, the ser-
vice provider might invoke an administrative (B/U) interaction, locks the mutex M10 and waits until
its response arrives. Since it holds the mutex M10, no other message can leave the service provider
meanwhile. That, of course, results in a deadlock since neither the service requestor nor the service
provider can send the response that is needed to release the locked mutexes.

The Administrative (C/U) Interaction Of course, an administrative (C/U) interaction behaves ex-
actly like the request part of the administrative (B/U) interaction. However, an administrative (C/U)
interaction does not await an answer. Thus, neither the mutex M1 nor the mutex M10 needs to be hold
beyond the actual send. That is the reason why administrative (C/U) interactions can be used in both
directions, from the service requestor to the service provider and vice versa.

Figure 5.94 summarizes the behavior of the administrative (C/U) interaction for both directions.
At the service requestor, again all upcalls ➂ get processed and thus, the mutex M10 at the service
provider always gets released. Therefore, the upcalls ➃ at the service provider can be processed as
well and the messages of both interactions, ➀ and ➁, get processed.

At the service provider, the upcall of an administrative (C/U) interaction can access any mutex
protected entities since it can acquire the mutex M10 and since it can access the monitors. At the
service requestor, the upcall is not allowed to access the mutex M1 and in contrast to an administrative
(B/U) interaction, there is no pending method invocation that can perform the desired processing after
getting resumed. Thus, an administrative (C/U) interaction from the service provider to the service
requestor always requires a separate thread that is allowed to acquire the mutex M1. In case the
mutex M1 is hold by an administrative (B/U) interaction, it gets released only after the response of
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Figure 5.94: Administrative (C/U) interactions into both directions (delivered policy).

the administrative (B/U) interaction arrived. That requires that all messages prior to the response are
also accepted by the service requestor. In principle, there can be any number of administrative (C/U)
interactions prior to the response that releases the mutex M1. Thus, one option is to use a single
thread and a buffer with unlimited capacity to hold all the upcalls to be processed. Another option is
to provide an unlimited number of threads so that each administrative (C/U) interaction is forwarded
to its own thread.

The connection oriented split protocol requires an administrative (C/U) interaction from the ser-
vice provider to the service requestor only in combination with the server initiated disconnect proce-
dure. As described in section 5.6.6.10, a separate thread and a buffer can be provided very efficiently
since all service requestors of a component can share it. Due to the role of that administrative (C/U)
interaction, the buffer size is not a critical issue. Thus, not being allowed to access the mutex M1 from
inside the upcall at the service requestor does – even with an administrative interaction – not result in
a limitation of the connection oriented split protocol.

The Service Related Interactions Service related interactions and administrative interactions dif-
fer with respect to their level of concurrency. With administrative interactions, one has to make sure
that always only one administrative interaction is active. In contrast thereto, service related interac-
tions need to be interleavable arbitrarily to support the interleaved use of a service. Thus, with service
related interactions, neither the mutex M1 nor the mutex M10 is hold beyond the actual send. In
particular, none of the mutexes is hold until a response arrived which is the reason why the (C

�

/U)
interactions of a service related interaction get not coupled by mutexes as it is the case for administra-
tive interactions. Service related interactions await a response by blocking on the appropriate monitor
but without holding any mutex that protects the current administrative state from being changed. It
is the responsibility of the administrative interactions to make sure that all affected service related
interactions are properly notified in case of relevant state changes. The locking mechanisms in case
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of service related interactions are illustrated by means of the (D/V) interaction pattern since one can
easily grasp the behavior of the other interaction patterns once the service related (D/V) interaction
pattern is made clear.
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Figure 5.95: Service related interactions from the service requestor to the service provider (delivered
policy).

Figure 5.95 illustrates the service related (D/V) interaction from the service requestor to the ser-
vice provider.

�
and � form the first (C

�

/U) interaction and � and � the second one.
�

is decoupled
from � and � is decoupled from � due to the assumed delivered policy. A passive handler uses the
upcalling thread to process the handler and we assume that this thread is the one that performs all
upcalls. Even now, the upcall of � can invoke � without causing a deadlock since the mutex M10
becomes available independently of the processing of further upcalls. That holds true since the upcall
of � always gets completed. Thus, � gets completed as well and then also � which allows the service
provider to process further upcalls.

A passive handler is not allowed to access any resources whose availability depends on the up-
calling thread. Often, however, one only needs to read a value or to perform a short calculation to
generate the answer and the needed resources are available independently of the other responsibilities
of the upcalling thread. In those cases, an active handler would be overkill. Since � can be com-
pleted independently of the availability of the upcalling thread, a passive handler is allowed to invoke
the completion method of � to directly answer a request if the above described situation holds true.



180 CHAPTER 5. THE SMARTSOFT FRAMEWORK

Using a passive handler with � results in a structure similar to the administrative (B/U) interaction
pattern from the service requestor to the service provider. The major difference is that the mutex M10
is released between � and � . Thus, there can be further interactions that get executed between � and
� and one thus has to consider the implications of interleaved interactions.

It is important to recognize that further interactions that are interleaved with the service related
(D/V) interaction pattern never cause a problem. All interactions from the service provider to the
service requestor always get completed and thus always make way for the interaction from � to � .
Lets now consider interleaved interactions from the service requestor to the service provider that are
invoked after

�
. These get delayed in case that the upcall of � is not yet available. However, that

does not have any effects on the interactions from the service provider to the service requestor and
sooner or later, the upcall at � can proceed. Lets now assume that the service related (D/V) interaction
uses an active handler at � and lets further assume, that the upcall of � is available so that further
interleaved interactions get executed after � . Now, either � is already running and the upcall of the
interleaved interaction has to wait until the mutex M10 gets available which happens in any case or
the upcall gets the mutex M10 first so that � has to wait until the interleaved interaction is completed.
The interleaved interaction either performs a send to the service requestor or invokes a handler. In the
first case, the mutex M10 gets released after the send that can always be completed. In the latter case,
the mutex M10 gets released since it is never hold when invoking a handler. Thus, even an overloaded
handler does not block the mutex M10. As consequence, interleaved interactions never interfere even
if they all need to access the mutex M10.

Figure 5.96 illustrates the service related (D/V) interaction from the service provider to the service
requestor. However, it has to be noticed that a service related (D/V) interaction is normally not directed
from the service provider to the service requestor since that would invert the roles of the server and the
client part of a communication pattern. Nevertheless, they could still be used with the chosen locking
strategy.

In contrast to the administrative (B/U) interaction, two-way interactions from the service provider
to the service requestor are allowed with service related interactions since the mutex M10 is always
released before the response is awaited. Thus, upcalls at the service provider, that require the mutex
M10, can get through even while the service provider is awaiting the response of the service related
two-way interaction. Since the mutex M10 is not hold, messages can leave the service provider
meanwhile. Thus, even if the service requestor holds the mutex M1 due to a not yet completed
administrative (B/U) interaction from the service requestor to the service provider, sooner or later the
service requestor receives the message that completes the administrative (B/U) interaction. Thereby,
the mutex M1 gets released so that the response of the service related two-way interaction can leave
the service requestor. Finally, both interactions are completed.

A precondition for resolving interactions is that service requestors always accept the messages that
are addressed to them. This rule is the key towards sorting out all the nested and concurrently active
interactions inside a communication pattern. An upcall at the service requestor must never acquire
the mutex M1 since the mutex M1 gets available only as long as further upcalls can be processed.
Again, the mutex M1 might be hold by an administrative (B/U) interaction that is directed from the
service requestor to the service provider. Its response can be accepted only if the thread to process
upcalls is available. Furthermore, the handler of

�
must never induce a tailback in case it invokes �

and even on top of a delivered policy, it is not sufficient to just have an active handler. Again, one
either requires a handler that provides a single thread and a buffer of unlimited size or a handler that
provides an unlimited number of threads. Otherwise, the handler could not accept further requests
addressed to it. However, these have to be accepted in any case to ensure that the mutex M1 gets
released. Only then, the completion method in � can proceed so that the handler can proceed as well.



5.6. THE FRAMEWORK BUILDER VIEW ON THE APPROACH 181

K

N

Requestor

:Service M1

:RecursiveMutex

M2

:RecursiveMutex

L

M

U

u
p

ca
ll

u
se

r 
le

ve
l h

an
d

le
r

A B

A B

C*

se
n

d

co
m

pl
et

io
n

:RecursiveMutex

M10

Provider

:Service

C*

se
n

d

B

B

U
u

p
ca

ll

A

A

re
qu

es
t

re
sp

on
se

resume on monitor

wait on monitor

Figure 5.96: Service related interactions from the service provider to the service requestor (delivered
policy).

Thus, in contrast to � , � must never be invoked by a passive handler of
�

and even only the above
two alternatives of an active handler are sufficient.

Of course, the same rules apply for a service-related one-way interaction from the service provider
to the service requestor. If it accesses only resources whose availability does not depend on any
communication activities, a passive handler is sufficient and a tailback does not cause any troubles
since all requests get worked off one after the other. The upcall of

�
must not invoke a user level

handler whose completion depends on resources that get available only in case the upcalling thread
can accomplish its further tasks. However, as soon as one accesses any resources whose availability
depends on a communication activity, one either needs an active handler with an unlimited number of
threads or an active handler with a single thread but with a buffer of unlimited size.

At the service requestor, the upcall of a service related interaction must never acquire the mutex
M1 but it also never needs to since it never needs to read states protected by the mutex M1. A service
requestor gets service related messages from the service provider only in case it invited the service
provider to do so. The service requestor defines which kind of services it calls for. Thus, a service
related interaction from the service provider to the service requestor is initiated at the service provider
only as long as the service requestor allows the service provider to do so. Thus, these upcalls at the
service requestor are always only invoked by messages that are conformant to the states that are pro-
tected by the mutex M1 (like the connection state, for example). Thus, there is no need for the service
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related upcalls to acquire the mutex M1. In case the upcall belongs to a two-way service related inter-
action, the handler is an active handler to be conformant to the rules for handlers at service requestors.
Of course, that thread is allowed to acquire the mutex M1 so that one can send the answer or check
whether a response is still needed. In case one now experiences a state change such that the two-way
interaction cannot be completed, all pending methods at the service provider part have already been
released by the administrative interaction so that discarding the response causes no problems.

Further Remarks on Service Related Interactions Even though service related two-way interac-
tions from the service provider to the service requestor are not a problem with respect to the locking
strategies, they are not only avoided due to the assigned roles of the client and the server part of a
communication pattern but also to simplify the rules that apply to the user level handlers at service
providers. In case of two-way interactions from the service provider to the service requestor, one
could end up in the setting shown in figure 5.97. That would require handlers with either unlimited
buffer capacity or unlimited number of threads even at the service provider.

handler is not able
to accept request

interface object
is congested

awaited answer to
unblock handler can
not get through

1

4

2

handler invokes
twoway interaction
on its service provider

3

awaited answer can
not get through and
handler can not proceed

5

Handler

...

Service Provider

Interface Object (Incoming)

...

Interface Object (Outgoing)

Figure 5.97: Potential deadlock in case of two-way interactions from the service provider to the
service requestor with active handlers.

Lets assume that the handler at the service provider is not able to accept any further requests
and thus produces a tailback. That prevents further messages addressed to that service provider from
getting through the interface object for incoming messages. In case there would be a two-way in-
teraction from the service provider to one of its service requestors, the active handler could invoke
that and await the response. Due to the tailback caused by the overload of the active handler, that
response could not get through the interface object and thus, the congestion could not be resolved.
It is important to note that this kind of deadlock occurs only if the handler does not have unlimited
capacity (either with respect to buffer space or the number of threads) and if the handler invokes a
two-way interaction at its service provider and if it awaits the response by the handler. The deadlock
can be avoided by violating at least one of its preconditions. Even though that can be done easily,
the communication patterns avoid that situation by not providing two-way interactions from a service
provider to a service requestor.

Of course, the above situation does not occur if the handler sends back an answer, invokes an
arbitrary one-way interaction at its service provider or invokes an arbitrary interaction on any other
service requestor or service provider.
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5.6.6.7 The Locking Strategies Revisited

The locking strategies are now reconsidered on top of a processed policy where both parts of an
interaction pattern are not decoupled. Administrative interactions do not depend on the decoupling so
that the mapping of the connection oriented split protocol is simplified significantly.
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Figure 5.98: Administrative (B/U) interaction from the service requestor to the service provider (pro-
cessed policy).

The Administrative (B/U) Interaction Figure 5.98 shows the administrative (B/U) interaction from
the service requestor to the service provider on top of a processed policy. The first M ➐ again denotes
the prepare method that is invoked prior to the send, the second M ➑ the simplified representation of
the sequence denoted by B in figure 5.91 and the third M ➒ the simplified representation of releasing
the monitor lock after it is not needed anymore.

Due to the processed policy, the send ➂ from the service requestor to the service provider is
completed only after the upcall ➇ already returned the response. Thus, it is important that the send
method ➂ does not hold the monitor lock while it is invoked. Otherwise, one could not complete the
upcall ➇ that provides the response. The same holds true for the mutex M2. In case the upcall ➇ needs
to access the list of monitors that would cause a deadlock. The wait ➃ returns immediately since the
awaited response is already available ➈. Again, all upcalls ➋ can always be completed independently
of any pending administrative (B/U) interaction. That holds true since the upcalls belong to different
interface objects. The upcall ➇ is that of the interface object ➁ in figure 5.80 and the upcall ➉ that
of the interface object ➀. Thus, the mutex M10 always gets released and all upcalls ➌ at the service
provider and further concurrent interactions can sort out each other without a deadlock.



184 CHAPTER 5. THE SMARTSOFT FRAMEWORK

Requestor

:Service M1

:RecursiveMutex

M2

:RecursiveMutex

can always be completed
1 2

3 4

5

:RecursiveMutex

M10

Provider

:Service

u
p

ca
ll U

se
n

d C*

re
tu

rn C*
se

n
dC*

u
p

ca
llU

re
tu

rnU

re
tu

rn

C*
re

tu
rn

U

A B B A

Figure 5.99: Administrative (C/U) interactions into both directions (processed policy).

The Administrative (C/U) Interaction Figure 5.99 shows two administrative (C/U) interactions
on top of a processed policy. The upcall ➃ gets blocked on the mutex M10 as long as ➁ is active.
The upcall ➂ can always be completed independently of how long the mutex M1 is locked since the
upcalls at the service requestor never require the mutex M1. Thus, ➁ gets completed as well and
the mutex M10 gets released. Now, the upcall ➃ gets resumed and, finally, ➀ gets completed. It is
important to note that even if the upcalling thread ➃ at the service provider gets blocked that does not
prevent the send ➁ from getting completed. Most important, the blocked upcall ➃ never locks up the
return path ➄. That holds true since the upcalls belong to different interface objects. The upcall ➃ is
that of the interface object ➃ in figure 5.80 and the upcall ➄ that of the interface object ➂.

The Service Related Interactions A service related (D/V) interaction from the service requestor
to the service provider behaves on top of a processed policy exactly like the administrative (B/U)
interaction. Again, no deadlocks can occur but the service requestor and the service provider are
decoupled only if the upcall of � uses an active handler. In all other cases, the asynchronous client
part characteristic becomes obsolete.

Lets now consider a service related (D/V) interaction from the service provider to the service
requestor. In principle, the mutex M10 must always be released before the response is awaited. Of
course, that rule must also be observed on top of a processed policy. Thus, the send of

�

must be
completed before the upcall

�
is invoked. Otherwise, one ends up in the same deadlock situation that

can arise with administrative (B/U) interactions from the service provider to the service requestor. An
active handler is needed anyway to decouple

�
and � . Of course, that handler also decouples

�

and
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�
and is thus sufficient to prevent from deadlocks. As before, the handler of

�
must never induce a

tailback in case it invokes � .

5.6.6.8 Coaction of Interaction Patterns Inside a Communication Pattern

Lets now solely consider the interaction patterns of a single communication pattern. At the service
provider, one can use the thread that handles all the upcalls to invoke the completion method that
returns a response to the service requestor. At the service requestor, a handler must always be able to
accept messages. As outlined above, one either needs an unlimited buffer size or an unlimited number
of threads in case one invokes another interaction pattern on the same communication pattern at the
service requestor. In all other cases, even a passive handler is sufficient.

The locking mechanism is free of deadlocks as long as no upcall at the service requestor acquires
the mutex M1. At the service requestor, all messages must always be sent from outside the mutex M2
and from outside the scope of a monitor. At the service provider, the mutex M10 must never be hold
while waiting for a response of a service related two-way interaction. Of course, one always has to
follow the mutex locking order.

At the service requestor, the mutex M1 needs to be hold while awaiting a response since otherwise
administrative interactions can interfere with each other. Thus, one cannot merge the responsibilities
of the mutexes M1 and M2 since upcalls have to be able to search through the list of monitors. One
is not allowed to hold the mutex M2 nor the monitor lock while performing a send since in case of a
processed policy, the upcall is invoked before the send returns. Since there are no administrative (B/U)
interactions from the service provider to the service requestor, there is no need to hold the mutex M10
while waiting for a response. Since upcalls at the service requestor are anyway decoupled in case they
invoke another interaction back to the service provider, even on top of a processed policy, the mutex
M10 always gets released after the send of the service provider. Thus, at the service provider, the
mutex M10 can also protect the list of monitors.

A communication pattern can host any number of interaction patterns. Independently of the inter-
action pattern type, all sending activities from the service provider to the service requestor can always
be completed since the upcall at the service requestor never needs to acquire the mutex M1 and since
the coordinating monitors can always be accessed. Client parts of an administrative (B/U) interaction
are always located at the service requestor. Thus, the service provider never needs to hold the mutex
M10 while awaiting a response. As consequence, the release of the mutex M10 does not depend on
the arrival of a certain message and is thus also independent of the ability of the service provider to
process an upcall from the communication system. The mutex M10 always gets released even if the
thread is blocked that handles the upcalls at the service provider. Thus, the upcall that blocked on
the mutex M10 gets resumed as well and further upcalls at the service provider also get processed.
Thus, sooner or later, even an administrative (B/U) interaction from the service requestor to the service
provider is completed so that the mutex M1 at the service requestor also always gets released.

The property that the service requestor is always able to process the messages addressed to it is
the key feature why interactions between both parts of a communication pattern always sort out each
other without deadlocks. Another important feature of the locking mechanism is that all upcalls can
always be serialized without introducing deadlocks. At the service requestor, that is obvious since
all upcalls always get through. At the service provider, that holds true since the availability of the
mutex M10 does not depend on processing other upcalls of that service provider. The mutex M10
gets available as soon as the send operation to the service requestor is completed and since that can
always be completed, the processing of upcalls does not get stuck. Thus, at the service provider, the
serialization does also not cause a deadlock.
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Furthermore, at the service provider, upcalls from the communication system need not to be de-
coupled before invoking the communication patterns. Since the administrative interactions even work
on top of a processed policy, one solely has to consider the service related interactions. Since these
all invoke a user level handler, one can delegate the decoupling task to the user level handlers by
providing appropriate handlers that ensure the decoupling without requiring any further user level
interventions.

At the service requestor, the upcalls from the communication system do also not depend on a
decoupling mechanism below or inside the communication patterns. As shown in sections 5.6.5.1 and
5.6.6.1, a service related upcall at a service requestor either belongs to an interaction pattern where
the actual processing must be invoked by the user or it belongs to a two-way interaction pattern that
is always directed from the service requestor to the service provider. In the latter case, the upcall at
the service requestor solely returns the answer. In all cases, there is no further processing invoked by
the upcall at the service requestor so that there can be no client part characteristics of an interaction
pattern be violated in case of not decoupling the service related upcall at the service requestor.

The event pattern is the only pattern where the upcall at the service requestor can invoke the
further processing. The further processing, however, is done by means of a user level handler so that
appropriate handler types are again sufficient to achieve the desired decoupling. All other activities
that are performed inside the service requestor prior to invoking the user level handler do not depend
on any kind of decoupling so that, again, a handler based decoupling model is sufficient.

As described in section 5.6.6.1, the query pattern, the push patterns and the event pattern are
always able to accept answers, updates and event firings, respectively. In all cases, the required
structures to accept the messages are available since the message is either expected as in case of the
query pattern or it overwrites a buffer as it is the case with the push and the event patterns. Thus, that
part of the service related interactions that is handled inside the communication patterns, is also not
critical since it does not require unlimited buffer space to keep the communication pattern alive. In
case of the query pattern, another request can only be invoked if both the client and the server are able
to set up the required administrative structures. Thus, if the query pattern runs out of memory, one
already cannot invoke further requests which would produce further responses. The push and event
patterns do not depend on the user to fetch any received data due to their overwriting behavior.

As consequence of both the serialization and the decoupling that is performed earliest inside the
user level handlers but still beneath the user level implementation, one does not already need elaborate
threading models at the level of the upcalls so that one can provide various threading models by means
of different handler types. This leaves it then to the user to select the appropriate processing models
and does not introduce numerous threads or buffers above the communication system and beneath the
user level. As additional remark, not depending on the decoupling for the administrative interactions
is equivalent to ignoring the oneway statements for the administrative interactions in tables 5.45 and
5.46. One can even merge the request/response pairs of an administrative interaction into a single
synchronous two-way remote method with the content of the response part as out arguments. Since
the administrative interactions require neither separate threads nor a decoupling layer, they can be
implemented very resource friendly.

With the communication patterns, the server initiated disconnect is the only administrative in-
teraction that needs to invoke another interaction and that thus depends on a decoupling mechanism
inside the service requestor part of a communication pattern. The upcall at the service requestor needs
to invoke the disconnect procedure that, of course, contains an interaction back to the service provider.
An upcall at the service requestor, however, must never invoke another interaction by the thread that
is responsible for handling the incoming messages. Furthermore, a service requestor must always be
able to accept all messages addressed to it. Nevertheless, in case of the server initiated disconnect,
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the decoupling can be achieved very efficiently as described in section 5.6.6.10.

5.6.6.9 Coaction of User Level Handlers and Communication Patterns

The handlers of the communication patterns can have a significant impact on the overall behavior of
a communication pattern. At service requestors, handlers are critical as soon as further interactions
are invoked on the same communication pattern. Thus, one approach is to avoid user level handlers at
service requestors. That is the approach taken by the communication patterns with the only exception
of the event pattern. In particular, there is no handler interface provided at the service requestors of
the push patterns.

A handler at a service requestor can be passive in case it accesses only such resources that in
no way depend on any communication activities. Even if the handler then causes a tailback, the
communication pattern can still sort out its interactions since the service requestor still works off one
message after the other independently of the congested communication paths. However, invoking
another interaction on the service requestor requires an active handler with either unlimited buffer
size or with an unlimited number of threads.

Normally, two types of handlers are provided with the event pattern, the passive and the active
handler. The active handler operates a queue by a single thread and provides buffering for events to
compensate for bursts. In case the queue size gets too large, further events are dropped which can be
detected by the user. The passive handler is operated by the upcalling thread and does not drop any
events. It causes delays as soon as the buffers of the communication system are filled up. Thus, it is
not advised to use it beyond signalling and forwarding of events. The passive handler must not block
on any communication dependent resource. Thus, it is neither allowed to access any method at its
service requestor nor any method at any other communication pattern.

On top of a communication system with a processed policy, the passive handler is implemented
as single-threaded handler with a fixed buffer size without dropping events. That achieves the desired
decoupling transparently to the user without changing the semantics of the handler. The handlers
of the event pattern do not introduce deadlocks as long as one does not wrongly apply the passive
handler since the service requestor still appears as unbounded sink. Even a tailback caused by the
passive handler gets resolved.

The strict rules for handlers at service requestors do not impose any restrictions on the concerned
communication patterns. In principle, the service requestor misses data only if the capacity of the
active handler either in terms of buffer size or number of threads is exceeded. Since a handler at
a service requestor is invoked for data the service requestor asked for, it is the fault of the service
requestor that it is not able to perform the processing in time. In particular, a service requestor should
never obtrude a service provider its timing.

Of course, in practice, there are rare cases where the buffer size would grow to a remarkable
size. In case of the event pattern, only a continuous activation could overrun the handler by too many
firings and the service requestor can always deactivate the corresponding event respectively select the
activation parameters more carefully. The same considerations apply to the service requestor parts of
the push patterns in case of adding a handler based interface.

Service providers also distinguish passive and active handlers. However, passive handlers can
even be used to send back responses to connected clients without causing a deadlock since service
requestors are always able to accept all incoming messages. Of course, an active handler of a service
provider is allowed to access further services. However, the type of handler determines what kind of
dependencies between components are supported. For example, an active handler with a single thread
can not process further requests while waiting for a response to complete the processing of the current
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item. Thus, a service provider using this type of handler must never be wired such that a circular
processing dependency occurs. However, due to the high level abstraction of services compared to
fine-grained method access, there are rare cases where circular processing dependencies make up
a reasonable configuration. Nevertheless, one can use a handler with a thread-per-client model or
even a handler with a thread-per-request model to tackle such settings. In most cases, services are
naturally specified such that an active handler with a queue and a single thread is sufficient to cover
the reasonable wirings of an application. As soon as the queue reaches a watermark, for example, the
discard method is called by the service provider to reject requests.

5.6.6.10 The Connection Management Procedures

The administrative interactions of the connection management form the core of the connection ori-
ented split protocol. The connect and the disconnect procedure are invoked from a service requestor
and the server initiated disconnect procedure is invoked from the service provider. The connection
management ensures that connected service requestors and service providers always know when their
opponent disappears. It implements an environment in which all interactions can rely on a deliv-
ered policy even if the underlying communication system provides a reliable send policy only. It is
sufficient to achieve a delivered policy for the connect procedure since once a service requestor is con-
nected to a service provider, both inform each other about getting deleted and becoming unreachable.
The designators of the messages refer to tables 5.45 and 5.46.

The Connect Procedure The connect request R0 and the response A0 form an administrative (B/U)
interaction from the service requestor to the service provider. The request R0 provides the address
of the service requestor and a connection identifier. The address of the service requestor enables
the service provider to inform the service requestors connected to it in case it gets destroyed. The
connection identifier is generated by the service requestor and it is changed with every connect that is
with every invocation of the connect procedure. It uniquely identifies each connect procedure within
a service requestor. Even if a connect fails, one is not allowed to reuse the connection identifier. As
described with the server initiated disconnect procedure, one could otherwise not identify outdated
server initiated disconnect messages in all cases. The response A0, that corresponds to a particular
request R0, can be identified by the connection identifier so that outdated A0 acknowledgments can
easily be ignored. The returned status of the response A0 can be either accepted or rejected. In
case the service requestor receives an accepted status, it got connected to the service provider and
its address was added to the list of clients at the service provider. A reject status indicates that the
service provider did not accept the connect and thus, there is no connection established to the service
provider.

Generally, a service provider can disappear after a service requestor got its address from the name
service and before it invokes the connect procedure. Due to the underlying (C

�

/U) interaction, one
cannot rely on an appropriate feedback from the communication system in case the service provider
does not exist anymore. Thus, the waiting time for the response A0 is limited by a timeout. If no
timeout occurs, the outcome is the above described standard connect procedure. In case of a timeout,
one has to distinguish several scenarios. An overview on the various connect procedures is given in
figure 5.100.

In the first case, the service provider still exists but the timeout occurred before the response A0
arrived at the service requestor. The service requestor assumes that it could not connect to the service
provider. However, sooner or later, the request R0 arrives at the service provider and the service
requestor gets added to the list of clients. That is the reason why the service requestor always sends
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Figure 5.100: Overview on the connect procedure.

the message R1 in case of a timeout of the response A0. The message R1 removes the newly added
service requestor from the list of clients at the service provider. Otherwise, the service provider would
assume that the concerned service requestor is connected to it whereas the service requestor assumes
that the connect failed.

The message R1 forms an administrative (C/U) interaction from the service requestor to the ser-
vice provider. At the service provider, one has to clearly identify the entry that belongs to the service
requestor to be removed. The client address is sufficient since each service requestor can be listed
only once which holds true since a service requestor can be connected to a service provider only once
at a time. Furthermore, due to the kept ordering of messages, there can be no late R1 message at
the service provider since a R1 message always arrives before the next R0 message of that service
requestor can arrive. Thus, the connection identifier is not needed to identify the proper entry in the
list of clients. The message R1 must be invoked after a timeout of the R0/A0 interaction occurred but
from inside that section that is protected by the mutex M1 of the R0/A0 interaction. It is important that
the mutex M1 is not released after the R0/A0 interaction is completed and before the R1 interaction is
invoked since otherwise further administrative interactions could interfere with the not yet completed
connect procedure.

The regular case of a timeout is a service provider that has disappeared. Again, the message R1 is
sent by the service requestor but now, it simply gets dropped by the communication system as it was
already the case for the message R0.

The timeout value to await the response A0 is not critical. Even with a too small timeout value,
one cannot mess up the protocol and a too large value is not problematic since it affects the connect
procedure only. That is executed rarely compared to the regular interactions performed by a commu-
nication pattern and a reduced efficiency of a connect in case of a no more existing service provider
has no effect on the efficiency of the current interactions once a connection is established.

In principle, the timeout is needed only on top of a reliable send policy but it does not disturb on
top of other policies. On top of both the delivered and the processed policy, it actually is obsolete
since the send already gives the feedback whether the recipient does not exist anymore. With these,
one could avoid the timeout if one does not invoke the wait that awaits the response A0 in case the
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send was not successful. However, not using a timeout does not allow to discard the contents of
buffers so that even on top of a reliable send and a processed policy, a timeout not only makes sense
but also avoids implementational differences.

In contrast to the service provider, there can be late messages at the service requestor. The response
A0 can arrive after a timeout occurred and even after the next connect is invoked. However, due to the
connection identifier, it is never mixed up with the awaited response A0.
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Figure 5.101: Details of the connect procedure.

Figure 5.101 shows the details of the involved interactions of the connect procedure. After the
service requestor obtained the address of the service provider from the name service, it generates the
interface object to access the service provider. In figure 5.80, that interface object is labeled by ➀. In
case the message R0 was sent successfully, the answer A0 is expected with a timeout.

At the service provider, the upcall of R0 first generates the interface object that is labeled by ➂ in
figure 5.80. It then checks the server ready flag. In case the service provider accepts the new connect,
the interface object is added to the list of clients and the message A0 is sent with an accepted status.
Otherwise, the message A0 is sent with a rejected status and the just generated interface object is
deleted. It is important to release the mutex M10 only after the upcall R0 is completed and to send the
message A0 without releasing the mutex M10 in between. Otherwise, a server initiated disconnect
might interfere at the service provider.
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A service provider accepts a new connect only while its server ready flag is set to true. The
server ready flag protects the service provider from new connects when it is not yet ready or when it
is already in the process of destruction as it is described with the server initiated disconnect. Being
able to reject further requests is important in connection with destroying a service provider. In that
situation, one still has to keep the communication alive to properly complete all interactions such that
the service provider can reach a state in which it can be safely shut down without leaving any pending
activities at service requestors. In that stage, of course, no further connect is accepted. Such a connect
can result from a service requestor that still got the address of the service provider from the name
service but invokes the connect procedure only after the service provider started its destruction.

At the service provider, the upcall of R1 simply removes the interface object belonging to the
address of the service requestor from the list of clients and deletes the interface object. With the com-
munication patterns, all interactions from a service provider to a service requestor require preceding
interactions from the service requestor like a query, an activate or a subscribe. As long as the connect
procedure is not successfully completed at the service requestor, the mutex M1 is not released. Thus,
no other interactions from the service requestor to the service provider can be invoked that would re-
quire further cleanup activities within the upcall of R1 at the service provider. That is also the reason
why it is unproblematic to already add the address of a service requestor to the list of clients with the
message R0.

With the communication patterns, there are no interactions from a service provider to a service
requestor that are invoked by the service provider solely based on the fact that the address of a service
requestor is contained in the list of clients. Otherwise, the following situation might occur. A service
requestor sends the message R0 and gets added to the list of clients. However, the service requestor
might encounter a timeout with respect to the response A0, sends the message R1 and destroys itself.
The service provider invokes an interaction after it received the message R0 and after the service
requestor got destroyed but before the message R1 arrived at the service provider. Now, the already
invoked interaction should be informed by the upcall of R1 that there can be no answer since one
wrongly assumed a valid connection to that service requestor.

In case of the communication patterns, the above described situation cannot occur. Once a sub-
scribe, an activate or a query is received that would require clean up activities, there can be no deferred
R1 message since then the subscribe, the activate and the query would have passed a R1 message.
Thus, all interactions, that are invoked from the service provider to the service requestor, are only
performed on established connections and are already covered by the delivered guarantee of the con-
nection management.

The only interaction that is invoked on the list of clients and for which the above situation can
arise is the server initiated disconnect. However, the server initiated disconnect does not expect an
answer and as described below, a discarded server initiated disconnect due to a disappeared service
requestor imposes no troubles. A service requestor always either regularly disconnects itself or it
sends the message R1 so that the entry in the list of clients gets removed for sure.

The Disconnect Procedure The disconnect request R2 and the response A2 also form an adminis-
trative (B/U) interaction from the service requestor to the service provider. The request R2 provides
the address of the service requestor to be disconnected and the response A2 acknowledges the com-
pletion of the disconnect procedure.

Figure 5.102 shows the details of the involved interactions. The mutex M1 not only ensures
that the disconnect procedure never interferes with a currently active send but it also blocks other
interactions from the service requestor while the disconnect procedure is active. The first step is
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Figure 5.102: Details of the disconnect procedure.

to set the connected flag to false. Thus, all further interactions, that depend on a connection to a
service provider, are rejected as soon as they can get the mutex M1 after the disconnect procedure is
completed.

The second step is to iterate through the list of monitors. All pending service related interactions
are informed about the disconnect by performing the appropriate state transitions on the state automa-
tons of the monitors of the service related interactions not yet completed. As a consequence, blocking
calls that await a not yet received response get released properly. From now on, still arriving responses
are discarded by the upcall of the service requestor either due to the state of the corresponding state
automaton or since the corresponding monitor does not even exist anymore. Responses can still arrive
as long as the disconnect is not completed at the service provider.

The next step is to invoke the R2/A2 interaction. At the service provider, the interface object of the
corresponding service requestor gets removed from the list of clients and all affected service related
interactions belonging to that service requestor are informed properly by setting their state automatons
to the appropriate state. After the response A2 is sent, the interface object, that corresponds to the just
disconnected service requestor is deleted. The deleted interface object is one of those denoted by ➂

in figure 5.80.
At the service provider, the mutex M10 is never released between getting the address of a con-

nected service requestor and sending the message to that address. Otherwise, an R2 upcall could be
executed in between and the address might get invalid if the service requestor destroys itself once it
got the message A2. Without releasing the mutex M10, the address either remains valid until the send
is performed or it is not anymore contained in the list of clients. In the latter case, one cannot invoke
an interaction since one does not get the address.

The service requestor always awaits the response A2. Since the response A2 always gets con-
sumed before the next disconnect interaction can be invoked, there can be no outdated A2 responses
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so that no identifier is needed with them. In contrast to the connect procedure, no timeouts are needed
since a service provider never disappears while there are still clients connected to it. Thus, it always
completes the disconnect procedures which includes sending the response A2.

The Server Initiated Disconnect Procedure The server initiated disconnect procedure is an ad-
ministrative (C/U) interaction from the service provider to the service requestor. By means of the
server initiated disconnect message, the service provider asks all its connected service requestors
to disconnect themselves from the service provider by using the regular disconnect procedure. The
server initiated disconnect procedure is invoked only in case the service provider gets destroyed.
Thus, it is invoked from inside the destructor of the service provider.
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Figure 5.103: The service provider part of the server initiated disconnect procedure.

Figure 5.103 illustrates the service provider part of the server initiated disconnect. First of all,
the mutex M10 is acquired. Setting the server ready flag to false rejects all further connects after the
mutex M10 is released. Furthermore, the address of the service provider is removed from the name
service so that service requestors cannot find the service provider anymore. However, there might still
be service requestors that already got the address but that have not yet invoked a connect procedure.
Finally, all currently listed service requestors are asked to disconnect themselves from the service
provider. Since the mutex M10 is not released before the message R3 was sent to all listed service
requestors, there can be no upcall in between that modifies the list of clients. After having sent the R3
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messages, the mutex M10 has to be released since otherwise the upcalls of the disconnect procedures
cannot be processed. The service provider waits until the list of clients is empty. Due to the server
ready flag, no further connects are accepted and since all connected service requestors are asked to
disconnect themselves, sooner or later the list of clients gets empty. From now on, there are no more
clients connected to the service provider. Therefore, the only messages addressed to that service
provider can be delayed connects that result from service requestors that got the address before it was
removed from the name service. Those messages, however, can be ignored since the corresponding
service requestor simply experiences a timeout. Thus, the interface object for incoming messages, that
is labeled by ➃ in figure 5.80, can be deleted. Once that interface object is deleted, one can destroy
the service provider itself.

A service provider must always be prepared to receive a delayed connect as long as its interface
object for incoming messages is accessible. Although the R0 messages do not have to be answered,
one has to make sure that the interface object is not deleted while an upcall due to a delayed R0 mes-
sage is performed from the interface object to the service provider. In case of CORBA, for example,
it is sufficient to destroy the servant object. The already delivered requests respectively the currently
executed methods are still completed but further requests are already rejected. As soon as the servant
object got deleted, it is also safe to delete the interface object since there can be no more active upcalls.
With an approach that is, for example, based on TCP sockets or mailboxes, one first shuts down the
socket and the mailbox, respectively. The next step is to shut down the thread that is responsible for
reading the messages and performing the upcalls. It can be shut down safely as soon as it resides in
the interface object. Now, it is safe to destroy the interface object. All messages not yet processed that
are stored in any buffers can be ignored since these can only be R0 messages.

Figure 5.104 illustrates the service requestor part of the server initiated disconnect procedure. The
upcall at the service requestor just has to invoke the regular disconnect of the service requestor. Since
an upcall at the service requestor is not allowed to invoke an interaction that requires the mutex M1
and since the ability of a service requestor to process further upcalls must never be blocked, the upcall
of the message R3 depends on a decoupling inside the service requestor. In particular, the chosen
decoupling mechanism has to be able to accept an unlimited number of server initiated disconnect
requests. However, the R3 messages of all service requestors of a component can all be serialized
since they either are related to different service requestors or are serialized anyway by the service
requestor. Thus, they can all be processed by a single thread, and a buffer with an unlimited capacity
in form of an active queue is sufficient. In practice, only a very small number of entries accumulate
since the R3 message is sent only in case a service provider gets destroyed. Thus, a component has to
buffer R3 messages only for those of its service requestors that are either connected to or are currently
trying to get connected to that disappearing service provider.

The active queue is placed inside the component management and provides a component central-
ized decoupling for server initiated disconnect messages. The upcall of the R3 message enqueues the
request. Each entry in the active queue contains the void-casted this-pointer of the service requestor
instance, the address of the static callback method that has to be invoked to finally call the discon-
nect procedure and the connection identifier. The void-casted this-pointer is needed due to the static
callback method. The static callback method allows to use a single active queue to handle the server
initiated disconnects of all service requestors and independently of their individual template bindings.
The upcall of the R3 message is always able to enqueue further R3 messages and gets blocked only
for the short time the queue is not accessible due to a currently active read operation.

The thread of the active queue simply blocks on the queue until a new entry is available. It
dequeues an entry as soon as there is one available. The first step is to acquire the mutex M100
that protects the list of registered service requestors (LORSR) from being modified while a queue
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Figure 5.104: The service requestor part of the server initiated disconnect procedure.

entry is processed. The next step is to check whether the entry belongs to a still existing service
requestor by means of the LORSR since one has to ensure that the callback address is still valid. In
case the service requestor still exists, the static callback method is invoked. Since the mutex M100
is not released meanwhile, the service requestor cannot get deleted between checking its existence
and invoking and executing the callback method. Within the callback method at the service requestor,
the void-casted this-pointer is casted into the original type and then allows to access the internals
of the service requestor instance from inside the static callback method. The callback method first
checks whether there is an active connection and invokes a disconnect only if the connection identifier
of the server initiated disconnect matches the currently active connection and discards the server
initiated disconnect otherwise. The connection identifier prevents a newly established connection
from getting disconnected due to a delayed server initiated disconnect. A delayed server initiated
disconnect can occur in case the service requestor already disconnects itself and independently of any
enqueued server initiated disconnect. By the way, a server initiated disconnect that was sent after the
R0 message arrived at the service provider but before the R1 message arrived there, is also correctly
discarded due to the not matching connection identifier. That, however, presumes that a connection
identifier is never reused even in case the connect failed. Since the mutex M100 is released earliest
after the thread of the active queue returns from the callback of the service requestor, no sign off can
proceed while a callback is active. Thus, as soon as the sign off was successful, one knows that there
is neither an active callback nor can there be any further callback.
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Destroying a Service Requestor In case the service requestor is exposed as port at the wiring slave,
it first resigns from the wiring slave. At the service requestor, the response A2 is the latest message
after which no more relevant messages are received until a new connection to a service provider is
established. The response A2 is the final acknowledgment that the connection to the service provider
was successfully closed. However, further messages can still arrive at the service requestor that result
from failed attempts to connect to other service providers. In case a timeout occurs when awaiting
the response A0 even though the service provider exists, the outdated A0 message still arrives at the
service requestor. Even a R3 message can be sent by the service provider after the R0 message arrived
and before the R1 message arrived there. The R3 message can be ignored since the address of the
service requestor gets removed by the R1 message without requiring a disconnect from the service
provider. The important property is that those messages are all outdated and thus do not need to be
processed. Therefore, it is uncritical to discard them and one can delete buffers without having to care
about the remaining entries. In case the service requestor was connected to a service provider, the
response A2 of the disconnect, that corresponds to the closing of the latest successfully established
connection, indicates the final message that has to be processed. All messages following that A2
response can be discarded. In case the service requestor never had been successfully connected to a
service provider, there is no need for a disconnect. Since there can be only outdated messages from
failed attempts to connect to a service provider, there are also no relevant messages that have to be
processed before destroying any buffers.

Although one knows when there can be no more relevant messages, one again has to be careful
when shutting down the interface object that is labeled by ➁ in figure 5.80. One has to make sure
that the interface object is not deleted while an upcall due to an outdated message is performed from
the interface object to the service requestor. For the interface object ➁, the same procedure that was
already explained with the interface object ➃ of the service provider, is applied. Again, all messages
not yet processed can be ignored safely. Once the interface object ➁ is destroyed, no further upcalls
into the service requestor can be invoked.

As next, the service requestor signs off from the component management to make sure that no
further callbacks due to a still enqueued server initiated disconnect are invoked. Since the service re-
questor is already disconnected, still enqueued messages can simply be ignored. As soon as the service
requestor is removed from the LORSR, the component management does not invoke the invalidated
callback address anymore.

Of course, the interface object ➁ is destroyed only after the service requestor is disconnected.
Thus, the callback detects that its connection identifier does not match and the disconnect is not
invoked from inside the callback. Therefore, it does not matter that the interface object ➁ is already
deleted even though there are still callbacks active until the service requestor signs off. Finally, it is
safe to destroy the service requestor.

Concurrency of a Connect, a Disconnect and a Server Initiated Disconnect Both parts of a com-
munication pattern, the service requestor and the service provider, operate independently of each
other. Thus, a server initiated disconnect can be invoked at the service provider while either a connect
or a disconnect is active or vice versa. The described connection management ensures that any kind
of interleaving never results in a transient state.

At the service requestor, all interactions of the connection management are serialized. Most im-
portant, a server initiated disconnect results in a regular disconnect that behaves just like any user
invoked disconnect. All connects and disconnects always get serialized independently of whether
they are invoked from the user level or due to the request of the service provider and due to the con-
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nection identifier, outdated requests to perform a disconnect can be discarded. Thus, there are no
additional aspects over the already described mechanisms of the connection management at service
requestors that have to be considered.

At the service provider, the situation is a bit more tricky since the mutex M10 cannot be hold
over the whole server initiated disconnect procedure. Thus, the service provider has to cope with
interleaved upcalls that get processed while the server initiated disconnect procedure is worked off.
In all stages, one has to make sure that the service provider never leaves a service requestor behind
that awaits a response not arriving anymore.

All attempts to connect to a service provider before the point of time labeled by ➀ in figure 5.103
are regularly accepted and are thus regularly asked to disconnect themselves from the service provider.
In ➁, the mutex M10 delays further upcalls until all currently connected service requestors are asked
to get disconnected ➂. In case a R1 message is delayed until the mutex M10 is released, the list of
clients contains the address of a not connected service requestor. With respect to the service requestor,
the server initiated disconnect is uncritical since it gets discarded due to the outdated connection
identifier. With respect to the service provider, the discarded R3 message is uncritical since that entry
gets removed as soon as the R1 message is processed after the mutex M10 is released. All attempts
to connect after ➃ are already rejected but all other interactions are still handled regularly. Thus,
new attempts to connect fail so that these service requestors cannot invoke further interactions that
would have to be processed. Since each regularly connected service requestor invokes a disconnect,
the interactions of service requestors get shut down properly one after the other. As soon as the list of
clients is empty, there are no more pending interactions related to that service provider at any of its
formerly connected service requestors nor are there any pending interactions at the service provider.
All attempts to connect after ➄ run into a timeout at the service requestor and thus do not need any
support from the service provider to get resolved.

5.6.6.11 The Mapping of the Connection Oriented Split Protocol

For the connection oriented split protocol, (C
�

/U) interactions with a reliable send policy are suffi-
cient as interface to the underlying communication system. The connection management ensures that
connections are established and removed such that all covered interactions can rely on a delivered
guarantee that is successfully sent messages can never miss their recipient and interactions awaiting a
response are always properly resolved and are never left behind. Since the connection management is
handled inside the communication patterns, buffers inserted before the communication patterns that
convert a processed policy into a reliable send policy are not a problem anymore. Since the adminis-
trative interactions do not depend on a decoupling, the decoupling has to be achieved for the service
related interactions only. Service related requests or responses that depend on a decoupling are all for-
warded to user level handlers. The decoupling mechanisms and the corresponding threading models
can thus be provided inside the appropriate handler types. Service related requests or responses that
do not invoke a user level handler and that are processed inside the communication patterns always
only overwrite already hold buffers and broadcast a signal to release pending method calls but never
invoke the actual processing. Thus, all service related upcalls that remain in the communication pat-
terns do also not depend on a decoupling mechanism. The only exception is the service requestor part
of the server initiated disconnect. However, that decoupling is implemented efficiently by means of
a component central mechanism. Thus, the connection oriented split protocol can be mapped easily
and efficiently onto all types of communication mechanisms.

Figure 5.105 summarizes the mapping of the (C
�

/U) interaction patterns of the communication
patterns. In principle, all service providers have to be independent of each other so that they cannot
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Figure 5.105: The mapping of the (C
�

/U) interaction patterns of the connection oriented split proto-
col.

share any resources, neither threads or buffers nor sockets or mailboxes or servant objects. The reason
is that otherwise all service providers sharing resources would get blocked altogether in case of a
tailback caused by one of the service providers. Thus, each service provider always has its own socket
and mailbox and servant object, respectively. Furthermore, at a service provider, the interface object
for incoming messages is always operated by a private thread. A single thread is sufficient since
serialization is allowed. In case of an object based middleware, a thread per object model is selected.

In contrast thereto, the upcalls from the communication system into service requestors are always
able to forward all their messages. Service requestors look like sinks with an unbounded capacity.
Thus, the interface objects for incoming messages of all service requestors of a component can share
the same resources. Of course, it finally depends on the available resources whether it is worthwhile to
implement the interface objects such that they share a mailbox or a socket, for example. In principle, a
single thread and a single communication port like a mailbox, a socket or a servant object is sufficient
to handle the incoming messages of all service requestors of a component. Normally, though, the
interface objects of the service requestors show the same structure as those of the service providers.
Thus, each interface object for incoming messages, independently of whether it belongs to a service
requestor or to a service provider, possesses its communication port and its thread to operate the
interface object.

The (C
�

/U) interactions of the connection oriented split protocol can be directly mapped onto
the interaction model (F)

�
without requiring any decoupling beneath the level of the communication

patterns. Besides the server initiated disconnect, only such interactions depend on a decoupling mech-
anism or on threading models that also invoke user level handlers. Thus, the required decoupling and
threading mechanisms can be implemented inside the handlers so that they are still not visible to the
user but are located even above the communication patterns. Simply by adding further handler types,
one can extend the range of available threading models without having to modify the communication
patterns. However, it is important to activate a thread per object policy with the servant objects as
described above. On top of the interaction model (F)

�
with its processed policy and its synchronous

server part invocation mode, more advanced threading models of the communication system need not
to be activated since these nevertheless require the user level decoupling. Otherwise, the delivered
characteristic of the client parts of the interaction patterns is violated. Due to the connection manage-
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ment, one could even insert buffers above the communication system without running into troubles
due to misinterpreted acknowledgments. With respect to the mapping, there is no difference between
the standard synchronous (F)

�
interactions of CORBA and those of RPC mechanisms.

One approach to fully explore the threading models of CORBA with its synchronous server part
interface is to use the AMI model. Then, however, one not only depends on the current stage of the AMI
implementations with their bulky interfaces but also on the available threading models. Furthermore,
threading models are always enabled on a per-servant basis so that even administrative interactions
get their own thread in case of a thread per invocation policy, for example.

Due to the connection management, there is now nothing special about the (G2) interaction model.
Thus, message based systems do not anymore impose severe mapping problems and the mapping
of the (C

�

/U) interaction pattern is straightforward. With CORBA, one does not anymore depend
on the sync with server policy of oneway declared methods and one can even use a weaker policy
that corresponds to a reliable send only. In particular with mailboxes, one does not anymore have
the problem of being allowed to shutdown a mailbox only after all its entries have been removed.
Of course, the same holds true for the buffer of the interaction model (E). Due to the connection
management, all kinds of buffers that result in a reliable send policy do impose any problems anymore,
neither in mailboxes nor on top of TCP sockets.

5.6.7 The Communication Patterns

The following sections give detailed insights into the internal structures of every single communication
pattern. Of course, neither the administrative interactions nor the underlying interaction patterns need
to be explained anymore. So far, however, only the basic principles of the interplay of the service
related and the administrative interactions have been illustrated. Thus, the focus is now put onto the
service related interactions and their individual interplay with the administrative interactions.

5.6.7.1 The Component Management Class

The basic interactions of the communication patterns with the component infrastructure are summa-
rized in figure 5.106. The component management operates the communication mechanism of the
component and provides the access to the communication infrastructure. In case of the CORBA based
implementation, the overall infrastructure consists of the ORB, the POA and the access to the name
service. Furthermore, it provides the name of the component to the service providers of the compo-
nent.

The component management hosts the decoupling mechanism needed by the server initiated dis-
connect procedure. The interface at the component management class consists of the sign up, the
sign off and the enqueue methods and the service requestor provides the callback sid method that
is invoked by the component management class. The first argument of the callback sid method of
the service requestor is the void-casted this-pointer and the second argument is the connection iden-
tifier. The callback sid method of the service requestor and the enqueue method of the component
management class are already illustrated in figure 5.104.

Figure 5.107 shows the details of the component management class. The timer service is for
example used by the push timed service provider to get notified whenever a new update is due. A
component central timer is more efficient than having one in every pattern instance. The mutex M100
not only coordinates the access to the list of registered service requestors (LORSR) but also makes
sure that a service requestor cannot disappear while the component management invokes a callback
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Figure 5.106: Basic interactions of communication patterns with the component infrastructure.

at the service requestor. As long as the mutex M100 is hold, no service requestor can sign off and a
service requestor gets destroyed only after it signed off.

Besides their role with respect to the server inititated disconnect, the mutex M100 and the LORSR
are also used to implement the component wide effective blocking mode. The blocking method of the
component management class needs to be able to invoke the blocking component method of all service
related monitors. Since service providers currently solely offer non-blocking member functions at the
user interface, only service requestors possess service related monitors that need to be accessed by the
component management. Thus, service requestors provide the callbackBlocking method that can be
invoked from the component management to iterate through all service related monitors of a service
requestor. The first argument again is the void-casted this-pointer and the second argument contains
the new state of the component blocking flag that is forwarded to every service requestor. The LORSR
already provides the access to all service requestors of a component and the mutex M100 ensures that
a service requestor does not disappear while its callback blocking method is invoked.

Figure 5.108 shows the entry of the LORSR. The this-pointer identifies the communication pattern
instance and is also returned with every callback to a communication pattern instance. The next two
entries contain the address of the callback for the server initiated disconnect and that of the callback
of the blocking mode. A new entry is generated by the sign up method and it is removed by the sign
off method. By the way, service providers can use the same sign up and sign off methods in case
they once possess service related monitors. There are no modifications needed inside the component
management class. However, service providers also need to be extended by an appropriate callback
blocking method. The address of the callback sid method is set to null. Since a service provider
never enqueues a R3 message, that address is never invoked by the active queue of the component
management class.

Figure 5.109 shows the details of the sign up and the sign off procedure. The sign up method
provides all arguments required to generate a new entry in the LORSR and it returns the current state
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Figure 5.107: The framework builder view on the component management class.
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Figure 5.108: The class diagram of an entry of the LORSR.

of the component blocking flag of the component management that gets stored in the communication
pattern. The component blocking flag of the communication patterns is used to properly initialize
dynamically generated monitors that would otherwise not know about the current state of the compo-
nent blocking mode. At a service requestor, that flag is protected by the mutex M2. The mutex M2 is
hold during the sign up procedure since otherwise it might happen that the callback blocking method
gets invoked at ➀ so that the component blocking flag gets overwritten afterwards by the meanwhile
outdated return value. It is important to note that holding the mutex M2 when invoking the sign up
method does not cause a deadlock. In case the sign up method gets blocked on the mutex M100 at ➁,
it is not yet in the list since the sign up is called only once per service requestor so that it does not get
a callback that needs the mutex M2. In case the blocking mode of the component management gets
the mutex M100 at ➂, the callback gets blocked on the mutex M2. That, however, is at ➀ after the
sign up already returned so that the release of the mutex M2 does not anymore depend on the sign up
method. In contrast to the sign up method, the mutex M2 must not be hold while the sign off method
is invoked since now, the service requestor is already contained in the LORSR so that callbacks can be
invoked on the service requestor. Since the sign off does not return the initial state for the component
blocking flag of the service requestor, there is also no need to hold the mutex M2.

Figure 5.110 shows the details of the blocking method of the component management. It iterates
through the LORSR and invokes the callback blocking method for all registered communication pattern
instances. The callback iterates through the list of monitors and invokes the blocking component
method on every monitor.
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Hint on the Callback Interface The described callback interface that is based on static callback
methods is an implementational detail of the C++ based implementation. A static callback method
always needs the void-casted this-pointer as its first argument. Inside the callback method, the original
type of the communication pattern instance is known so that the void argument can be casted into the
original type. The this-pointer provides the access to the communication pattern instance from inside
the static method. The advantage of this approach is that one can easily manage callback methods
of different classes even if these are not derived from a common base class. Earlier implementations
suffered from flawed template implementations so that one could not use a common base class for
all communication pattern templates. Even though these flaws do not exist anymore with up-to-date
compilers, the callback interface has not been changed anymore. In particular with the interface
objects, that kind of callback mechanism approved to be very useful and still simplifies the overall
implementation. Since these details are only visible to the framework builder, one can ensure that the
callback methods are only used in the intended way. On the basis of the described details, it is not
only possible to implement the communication patterns by means of other programming languages,
but one could also easily refactor the callback interface.

5.6.7.2 The Send Pattern

The send pattern is the most simple communication pattern. It does even not need all the structures
introduced in the previous sections. In particular, the mutex M2 is not required since there are nei-
ther deferred answers nor does the send pattern possess any service related interactions that need
to be informed about any state changes. Thus, the basic structures that can be found in any of the
communication patterns, are explained by means of the send pattern.

The Client Part The client side internals of the send client class are shown in figure 5.111. The
methods comprise the already known user interface methods as well as the callback methods for
incoming messages. The arguments of the latter conform to the message format with the first argument
being the already known void-casted this-pointer of the send client instance. The set of attributes of
the send client pattern comprises the minimum number of required attributes. These attributes can
therefore also be found in the other client patterns.
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Figure 5.110: The sequence diagrams of the component blocking method.

Table 5.111 gives further explanations on some of the attributes. The last three attributes of the
send client provide the interface to the communication system. The client is the interface object
for incoming messages that forwards incoming messages to the handlers of the send client. The
clientAddress is the address of the send client that is transmitted to service providers in case of a
connect. The servant is the interface object for outgoing messages and is available only in case the
send client is connected to a service provider.

The Client Side Administration Internals The client side administration interface comprises
the add, remove, connect, disconnect and the blocking method. The client side parts of the connect,
the disconnect and the server initiated disconnect of the send client comply with the generic form of
those administrative interactions. The only difference is that all parts related to the mutex M2 and the

Attribute Description

connectedFlag:bool Indicates whether a connection to a service provider exists. If true, one can send
messages to the now valid server address. This flag is protected by the mutex M1.

connectionIdentifierCounter:long Is incremented with every attempt to connect to a service provider and allows to
identify outdated requests to get disconnected and outdated responses due to failed
attempts to connect to a service provider. It is also protected by the mutex M1.

managedPort:RecursiveMutex This mutex is used to protect the managed port flag and to synchronize the execution
order of concurrent calls to the add / remove methods.

managedPortFlag:bool Indicates whether that service requestor is registered as port at the wiring slave. In
that case, the portname holds a valid port name.

Table 5.47: Description of the client part attributes.



204 CHAPTER 5. THE SMARTSOFT FRAMEWORK

C

−
−
−

Send Client

:SmartComponent* // provides access to component management
:WiringSlave* // provides access to wiring slave

// monitor of administrative interaction

−
connectedFlag:bool
M1:RecursiveMutex

// indicates whether client is connected to a server
// protects the server connection from changes

connectionIdentifierCounter:long
−
− // maintains the connection identifier
−

−
−

− monitorDisconnect:AdministrativeMonitor
monitorConnect:AdministrativeMonitor

// monitor of administrative interaction

managedPort:RecursiveMutex
managedPortFlag:bool
portname:string

// protects the managedPortFlag from concurrent access
// indicates whether client is exposed as port
// name of the port if exposed as port

callbackSID(:void*,connectionIdentifier:const long) : void [static] // component management

handlerForAcknowledgmentConnect(:void*,:const long,:const long) : void [static]
handlerForAcknowledgmentDisconnect(:void*) : void [static]

−
−
− handlerForServerInitiatedDisconnect(:void*,:const long) : void [static]

−
− clientAddress:Address

servant:InterfaceObjectOutSendClient*
// own address of this client instance
// interface object outgoing messages−

// interface object incoming messagesclient:InterfaceObjectInSendClient*

// comm. callback
// comm. callback
// comm. callback

−
−
−

callbackWiringDisconnect(:void*) : void [static]
callbackWiringConnect(:void*,:const string&,:const string&) : void [static]
callbackBlocking(:void*,:const bool) : void [static]

// wiring slave
// wiring slave
// component management

+ member functions of user interface

−

Figure 5.111: Details of the internals of the send client class.

list of monitors are removed. Since the send pattern has no blocking methods, the blocking method
is available for compatibility reasons only and simply does nothing. Therefore, the callback blocking
method is also just empty.
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Figure 5.112: The internals of the client side handler for the acknowledgment message A0.

The internals of the handler for the acknowledgment message A0 are shown in figure 5.112. The
upcall acquires the mutex of the administrative monitor and checks whether the returned connection
identifier matches the expected one. If that holds true, the state of the automaton is set to ok, the
received status is stored in the statusA0 attribute so that it becomes accessible from inside the send
client object and finally, a broadcast is emitted before the mutex of the monitor is released. Due to the
connection identifier, outdated A0 messages are properly discarded.

As already shown in figure 5.106, service requestors can add themselves to a wiring slave to
become an externally visible port. Thus, each service requestor possesses an add and a remove method
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and also provides the callback wiring connect and the callback wiring disconnect methods to execute
wiring requests from the wiring slave. The callback methods simply invoke the regular connect and
disconnect methods. The wiring slave can directly invoke the regular connect and disconnect method
in case all service requestors are derived from a common base class that already provides the two
methods. Then, the callback methods are not needed anymore.

call remove method to remove
eventually valid port registration

update managedPortFlag

:Send Client managedPort:RecursiveMutex :Wiring Slave

add()

add

status

user interface

A

Figure 5.113: The internals of the client side add method.

update managedPortFlag

:Send Client

remove()

managedPort:RecursiveMutex :Wiring Slave

user interface

remove

status
A

Figure 5.114: The internals of the client side remove method.

The add method is shown in figure 5.113 and the remove method in figure 5.114. The managed-
Port mutex is used to serialize concurrent calls to the add and remove methods since otherwise the
port state could be messed up in the service requestor.

The wiring slave maintains a list of ports that is protected by a mutex. That mutex is hold by
the wiring slave while it calls the connect or the disconnect method of a service requestor. Due to the
mutex, a service requestor cannot get removed from the list of ports while the wiring slave is accessing
it. Thus, it can also not get destroyed while the wiring slave is acting on the service requestor since the
service requestor always invokes the remove method first. Since both the connect and the disconnect
procedure, do not need to acquire the managedPort mutex, an add and remove method that get blocked
on the mutex of the wiring slave and that holds the managed port mutex imposes no problems.

The Client Side Service Internals Figure 5.115 shows the send method that transmits the user
provided communication object to the service provider. A send can be performed only if the client is
connected to a server. Of course, the send operation is protected by the mutex M1.
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:Send Client M1:RecursiveMutex

send

disconnected
ok
communication error

user interface

connectedFlag =

no yes

true ?

send command message

C*

se
n

d

error ?

no yes

A B

D

Figure 5.115: The internals of the client side send method.

The Server Part The server side internals of the send server class are shown in figure 5.116. The set
of methods again comprises the callback methods for incoming messages. There are no user interface
methods listed since the send server possesses only a handler based interface. The set of attributes of
the send server pattern comprises the minimum number of attributes required in a service provider.

C

−
−
−
−
−

Send Server

:SmartComponent*
serviceName:string

M10:RecursiveMutex
listOfClients:list<SmartPtr<InterfaceObjectOutSendServer>>
serverReadyFlag:bool

−

− // comm. callback

server:InterfaceObjectInSendServer*
serverAddress:Address

−

handlerForConnect(:void*,:const Address,:const long) : void [static]−
−

// comm. callback
// comm. callback

handler:SendServerHandler<C>&−

handlerForDisconnect(:void*,:const Address) : void [static]
handlerForDiscard(:void*,:const Address) : void [static]

// maintains the list of connected clients
// indicates whether service is accessible
// name of the service
// provides access to component management

// protects access to the list of clients

// handler for processing commands

// interface object incoming messages
// own address of this server instance

handlerForCommand(:void*,:const Any&) : void [static] // comm. callback−

Figure 5.116: Details of the internals of the send server class.

The server ready flag indicates whether a service provider is accessible. It is protected by the
mutex M10. The handler attribute provides access to the handler that processes incoming commands.
The server is the interface object for incoming messages that forwards incoming messages to the
handlers of the send server. The server address is the address of the send server that is registered at
the name service. The list of clients contains the interface objects for outgoing messages to connected
service requestors. With the send pattern, that list is only needed to be able to invoke a server initiated
disconnect.



5.6. THE FRAMEWORK BUILDER VIEW ON THE APPROACH 207

The Server Side Administration Internals With the send pattern, there are no service related
interactions that need to be resolved by any of the administrative interactions. Thus, the server parts
of the connect, the disconnect and the server initiated disconnect of the send server comply with the
generic form of those administrative interactions.

The Server Side Service Internals Figure 5.117 shows the server side part of the service related
(C/U) interaction. It does not require any server side administrative structures and simply invokes the
provided handler. It does not require the mutex M10 since a disconnect of any client can get processed
only via the same thread that currently forwards the command.

:Send Server :Send Server Handler

handlerForCommands

callback interface
handleSend(command)

B A

Figure 5.117: The internals of the server side command handler.
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5.6.7.3 The Query Pattern

The query pattern is the most complex pattern with respect to the internals since it provides a two-way
interaction that is based on an asynchronous request/response protocol. That requires the client side to
properly assign the received responses to pending requests and the server side to distribute available
answers to the proper clients. Furthermore, disconnecting a client now requires to clean up not yet
fully processed requests at the server.

The Client Part The client side internals of the query client class are shown in figure 5.118. The
additional attributes compared to the send pattern are explained in table 5.48. The handler for the
answer message accepts the incoming responses. The first argument is the already known this-pointer,
the second argument the content of the communication object of the answer and the third argument
the client side query identifier that was provided with the request. It is returned to be able to correctly
assign answers to open requests. The fourth argument indicates whether the response contains a valid
response. That is the case if the request was rejected at the service provider or got discarded there.

A
R

−
−

Query Client

:SmartComponent* // provides access to component management
// provides access to wiring slave:WiringSlave*

monitorConnect:AdministrativeMonitor
monitorDisconnect:AdministrativeMonitor
M1:RecursiveMutex
connectedFlag:bool
connectionIdentifierCounter:long

// monitor of administrative interaction
// monitor of administrative interaction
// protects the server connection from changes
// indicates whether client is connected to a server
// maintains the connection identifier

−
−
−
−
−
−
−
−
−
−
−
−
−

M2:RecursiveMutex
:list<SmartPtr<Client Side Query Monitor>>
queryIdentifierCounter:long
managedPort:RecursiveMutex
managedPortFlag:bool
portname:string
userBlockingFlag:bool
componentBlockingFlag:bool

// protects the list of monitors
// list of monitors
// maintains unique client side query identifiers
// protects the managedPortFlag from concurrent access
// indicates whether client is exposed as port
// name of the port if exposed as port
// stores user blocking mode for initialization of new queries
// stores component blocking mode for initialization purposes

client:InterfaceObjectInQueryClient*
clientAddress:Address
servant:InterfaceObjectOutQueryClient*

// interface object incoming messages
// own address of this client instance
// interface object outgoing messages

−
−
−

handlerForAcknowledgmentConnect(:void*,:const long,:const long) : void [static]
handlerForAcknowledgmentDisconnect(:void*) : void [static]
handlerForServerInitiatedDisconnect(:void*,:const long) : void [static]
callbackSID(:void*,connectionIdentifier:const long) : void [static]
callbackBlocking(void*,:const bool) : void [static]
callbackWiringConnect(:void*,:const string&,:const string&) : void [static]
callbackWiringDisconnect(:void*) : void [static]

member functions of user interface+

−

−
−
−
−
−
−
−

// component management
// component management

// comm. callback
// comm. callback
// comm. callback

// wiring slave
// wiring slave

// comm. callbackhandlerForAnswer(:void*,data:const Any&,qid:const long,status:const long) : void [static]

Figure 5.118: Details of the internals of the query client class.

All active queries are represented by their own monitor instance that is shown in figure 5.119.
Each query can be identified by the unique query identifier and provides storage for the received
answer. The wait method is adjusted to the needs of the query pattern. It blocks only if the state of the
automaton is pending since that is the only state in which an answer can still be expected. Of course,
the blocking indicator must also evaluate to true indicating that blocking is allowed.



5.6. THE FRAMEWORK BUILDER VIEW ON THE APPROACH 209

Attribute Description

:list � SmartPtr � Client Side Query Monitor ��� The list of monitors holds the monitors of the currently active queries.
queryIdentifierCounter:long That counter provides the unique identifier assigned to every query. It

is protected by the mutex M2.
userBlockingFlag:bool The current setting of the user blocking mode needs to be stored to be

able to properly initialize newly created monitors. It is protected by
the mutex M2.

componentBlockingFlag:bool The current setting of the component blocking mode that gets initial-
ized by the sign up method. It is updated by the callback blocking
method and is protected by the mutex M2.

Table 5.48: Description of the client part attributes.

Monitor

+

+

qid:long // client side query identifier
+ state:Automaton // {pending, valid answer, got disconnected, invalid}

:A // received answer (type of communication

wait() : void throw()+

//  object provided by template instantiation)

Client Side Query Monitor

− monitor lock must already be hold
− if blocking indicator is true

and state is pending then wait
− keep monitor lock when returning

to allow state check after returning
into user space

Figure 5.119: The client side representation of an active query.

Figure 5.120 shows the client side state automaton of a query. A new request initializes its state
automaton to the pending state. Receiving the answer performs the state transition c to the valid
answer state. Consuming the received answer by either a receive, a receive wait or a discard performs
the state transition e. In the final invalid state, the monitor is removed from the list of monitors which
invalidates the query identifier. Due to the used smart pointers, it gets destroyed as soon as no more
references point to it. Performing a disconnect while the answer has not yet been received performs
the state transition g. The got disconnected state indicates that the answer belonging to this query
identifier cannot be received anymore. The state transition i is performed when the query identifier
gets consumed. Performing a disconnect in the valid answer state is handled by the state transition d.
A disconnect does not affect already received but not yet fetched answers. These keep valid and can
be fetched at any point of time. Finally, a disconnect does not affect the disconnected state. That is
captured by the state transition h. The state transition b is executed by the receive method in case the
answer is not yet available and a discard performs the state transition k.

The important point now is that a broadcast never releases a blocking method wrongly such that it
would have to reinvoke the wait. The state transitions c, g and k invoke a broadcast since leaving the
pending state either means that the expected answer is available or that it cannot be received anymore
or that the query got discarded. In all cases, it makes no sense to further block so that the wait does
not need to be reinvoked once the pending state is left. In case the wait awakes in the pending state,
the blocking indicator evaluates to false and blocking calls have to return to the user level. Again, the
wait does not have to be reinvoked. Thus, the client side state automaton of the query pattern and its
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answer
valid

invalid

pending

disconnected
got

a

g

i

e

f

h

b d

c
broadcast

broadcast broadcast
k

Figure 5.120: The client side state automaton to manage the lifecycle of a query.

wait method fully comply with the general policy of the monitors.
Each query is represented by its own monitor instance that is independent of all other open queries.

The monitor coordinates everything related to the particular query by its singular state automaton.
Each invoked user level method holds its pointer to the corresponding monitor instance. Due to the
used smart pointers, the monitor instance disappears only after none of the concurrent calls does need
the monitor instance anymore. Thus, each invocation, that holds a pointer to the monitor instance,
can get completed and can process a broadcast without getting into troubles due to a disappeared
monitor instance. However, only one invocation can consume a valid identifier and all others then
correctly experience an invalid identifier due to the meanwhile performed state transitions. Due to the
monitor protected state automaton, concurrent calls waiting on the same query identifier neither miss
a broadcast nor consume an identifier multiple times. Due to the used smart pointers, even arbitrarily
called discards do not impose any problems.

The Client Side Administration Internals The client side administration comprises the add,
the remove, the connect, the disconnect and the blocking method. The add, remove and connect
methods of the query pattern work in the same way as the ones of the send pattern. The blocking
method of the user interface of the query client is shown on the left of figure 5.121. It stores the
blocking mode in the user blocking flag to be able to properly initialize newly generated monitors of
newly invoked queries. Furthermore, it forwards every modification of the user blocking flag to all
the monitors of the list of monitors. The blocking callback invoked by the component management
is shown on the right of figure 5.121. It works in the exactly same way but uses the component
blocking flag to store the blocking mode and the blocking component method instead of the blocking
user method.

Figure 5.122 shows that part of the disconnect method that performs the pattern specific state
transitions on the monitors of the service related interactions. Only queries in the pending state are af-
fected by a disconnect since these cannot get the expected answer anymore. Therefore, the disconnect
executes the state transition g for those so that all methods that currently block on the corresponding
monitor get released. Of course, already received responses keep valid and are not affected by a dis-
connect. After the disconnect is completed, no more monitors are in the pending state and all affected
queries are informed properly. The state transitions performed by the disconnect are summarized in
table 5.49. Since the mutex M1 is hold during the whole disconnect procedure and since that also
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call blocking user
method of monitor
with value of
user blocking flag

list of monitors

call
method of monitor
with value of
component blocking flag

list of monitors

blocking component

:Query Client M2:RecursiveMutex :Query Client M2:RecursiveMutex

blocking

user interface

for all entries in the

update

A
status

blocking

for all entries in the

update

A (invoked from component management)

user blocking flag component blocking flag

Figure 5.121: The internals of the client side blocking method.

:Query Client M2:RecursiveMutex M1:RecursiveMutex

disconnect

user interface

connectedFlag =

yes

true ?

for all entries in thelist of monitors

A

acquire monitor lock

pending −> got disconnected
got disconnected −> got disconnected
valid answer −> valid answer
invalid −> invalid

execute state automaton:

release monitor lock

set connectedFlag to false

and broadcast

Figure 5.122: The internals of the client side disconnect method.

holds true for the request method, both cannot interfere so that the disconnect cannot miss a newly
generated monitor instance.

The Client Side Service Internals The request, receive, receive wait and discard methods form
the asynchronous user interface that allows the deferred reception of an answer. Figure 5.123 shows
the request method. A new monitor with a unique query identifier is generated. It is initialized to the
pending state and is added to the list of monitors. In case the request could not be sent successfully, the
monitor is set to the invalid state and is removed from the list of monitors so that it can get destroyed.

The mutex M1 ensures that no disconnect can be executed while a new query is invoked ➀.
Otherwise, the state automaton of the new monitor instance could miss a state transition from the
pending to the got disconnected state since it is not yet accessible via the list of monitors.

The server can send a message that is related to the new query only after it received the message
➁. Prior to that point of time, all server side methods return with a wrong identifier. Since the message
➁ is sent only after the monitor got added to the list of monitors, any response can already find the
monitor and access its state automaton so that no response can be missed even if it arrives just after
➁. This also holds true for the server side discard since it is based on the regular response.
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Automaton state on invocation New automaton state Action

pending got disconnected transition g
got disconnected got disconnected transition h
valid answer valid answer transition d
invalid invalid transition f

Table 5.49: The state transitions performed by the disconnect method.

A client side method can be invoked with an arbitrary query identifier. As soon as the mutex
M2 is released at ➂, the newly generated monitor is already found in the list of monitors so that no
wrong identifier status is returned anymore. That does not matter since the already invoked methods
experience a regular query in case of successfully sending the query request message. In case of an
error, the state transition k is executed and thus all blocking waits are released for sure. As soon as
➃ is reached, there are no more blocking calls on that monitor instance due to its invalid state and all
methods already return the wrong identifier status. As soon as ➄ is reached, the wrong identifier status
is returned since the monitor cannot anymore be found in the list of monitors. A client side discard
cannot interfere since that is anyway inhibited by the mutex M1.

The error branch ➅ is invoked only in case the send of the query request message was not success-
ful. Due to the missing request message, there can be no answer message from the server and thus,
only the state transition k is required at ➆. The got disconnected state cannot be encountered since a
disconnect is delayed by the mutex M1. The valid answer state is not possible since the request was
not sent and the invalid state is not possible since a client side discard is also delayed by the mutex
M1. The invalid state can also not be reached via a server side discard due to the never sent request
message.

Automaton state on invocation Returned status New automaton state Action
of answer message

pending ok valid data transition c, store received answer
error invalid transition k, discard message

got disconnected — got disconnected transition h, discard message
valid answer — valid answer transition d, discard message
invalid — invalid transition f, discard message

Table 5.50: The state transitions performed by the callback handler of the answer message.

Figure 5.124 shows the callback handler for incoming answers and table 5.50 summarizes the
state transitions performed inside the handler. The monitor belonging to the received answer is non-
ambiguously identified by means of the returned client side query identifier. Due to the used smart
pointers, the mutex M2 can be released as soon as the monitor has been found. In case the answer
is expected, the corresponding monitor exists and it is in the pending state. Depending on the status
returned by the response message, either the transition c or k is executed. Both transitions include a
broadcast so that all blocking calls get released. The returned status is set to error either in case the
request was rejected at the service provider or in case it was discarded there by the user level discard.

A response encounters the got disconnected state in case the client invokes a disconnect while an
answer is already on its way back to the client. At the client, the state automatons are already set



5.6. THE FRAMEWORK BUILDER VIEW ON THE APPROACH 213

:Query Client

:Client Side

Query Monitor

M2:RecursiveMutex M1:RecursiveMutex

set automaton state to
pending and generate new
client side query identifier

set automaton state to
invalid and broadcast

1

2

add this instance to the
list of monitors

3

7
6

4

5

request

connectedFlag =

no yes

true ?

<<new>> (smart pointer)

send query request message

error ?

no yes

user interface

blockingUser(userBlockingFlag)

blockingComponent(componentBlockingFlag)

disconnected
ok
communication error

remove this instance from
the list of monitors, always
ignore errors due to already
removed monitor instances

Figure 5.123: The internals of the client side request method.

appropriately by performing the state transition g that already released all blocking calls. The invalid
state is encountered in case of a client side discard and again, all blocking calls are released once the
invalid state is reached. In case the monitor does even not exist anymore, it is also safe to discard
the response since a monitor gets removed only in the invalid state and that is reached only after
all blocking methods have been signalled. Thus, in all those cases it is safe to discard the response
without leaving any pending queries behind.

Figure 5.125 shows the receive method and table 5.51 summarizes the state transitions. Since
the receive method operates only locally without requiring any communication, it does not acquire
the mutex M1. It returns no data if called in the pending state, disconnected if called in the got
disconnected state and it returns the available answer with ok if called in the valid answer state. Both,
the got disconnected and the valid answer state proceed to the final invalid state and consume the
identifier. The mutex M2 could be released at ➀ since once the monitor is found, it does not disappear
due to the smart pointer. However, the mutex M2 then needs to be reacquired at ➁.

Figure 5.126 shows the receive wait method and table 5.52 summarizes the state transitions that
are performed by the receive wait method. The mutex M2 can be released at ➀ since the monitor
cannot get destroyed while the receive wait method holds the smart pointer to the monitor instance.

The wait method of the monitor blocks only if the blocking condition evaluates to true and if the
automaton is in the pending state. Blocking can be inhibited or aborted by setting the user blocking
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M2:RecursiveMutex:Query Client

execute state automaton

handlerForAnswer

callback interface
identifier in
list of monitors ?

B

− available when query identifier valid
− keeps valid due to smart pointer

no yes

:Client Side

Query Monitor

Figure 5.124: The internals of the client side handler for the answer message.

:Query Client

:Client Side

Query Monitor

M2:RecursiveMutex

available when query identifier valid
and keeps valid due to smart pointer

1

2

always ignore errors due to already removed monitors
list of monitorsremove this monitor from

no yes

receive

user interface

automaton state = pending ?
yes no

identifier in
list of monitors ?

wrong identifier
no data
status

valid answer −> invalid
got disconnected −> invalid
invalid −> invalid

return:
return:
return:

ok
disconnected
wrong identifier

and answer

Figure 5.125: The internals of the client side receive method.

flag or the component blocking flag of the monitor to false. Invoking the receive wait method in the
pending state with a blocking indicator that evaluates to true blocks the method call until either any
other state is reached or the blocking mode is set to false or both. In all other cases, the receive wait
method passes the wait without getting blocked.

A pending state after having passed the wait always indicates that blocking is not allowed. Thus,
the method call returns with a cancelled status. In case of the got disconnected state, the state transition
i is executed, the query identifier is consumed and the disconnected status is returned. In case of the
valid answer state, the state transition e is executed, the query identifier is again consumed and the
answer is returned with an ok status. In case of the invalid state, the wrong identifier status is returned.
The receive wait method awakes in the invalid state in case the request got discarded by calling the
discard method, either at the client side or at the server side or in case the request was already rejected
inside the server side upcall.

Since the mutex M2 must not be hold when the wait of the monitor is invoked, a concurrently
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Automaton state on invocation New automaton state Action Returned status

pending pending transition b no data
got disconnected invalid transition i, consume identifier disconnected
valid answer invalid transition e, consume identifier ok

return answer
invalid invalid transition f wrong identifier

Table 5.51: The state transitions performed by the receive method.

:Query Client

:Client Side

Query Monitor

M2:RecursiveMutex

available when query identifier valid
and keeps valid due to smart pointer

must not be hold while method blocks on
wait and must thus be released prior to
acquiring the monitor mutex

always ignore errors due to already removed monitors
list of monitorsremove this monitor from

1

no yes

receiveWait

user interface

automaton state = pending ?
yes no

suspended while waiting

wait on monitor

identifier in
list of monitors ?

state is
blocks only if blocking is allowed and

pending

wrong identifier

cancelled
status

valid answer −> invalid
got disconnected −> invalid
invalid −> invalid

return: ok
disconnected
wrong identifier

return:
return:

and answer

Figure 5.126: The internals of the client side receive wait method.

called client side discard can remove the monitor from the list of monitors so that the monitor can not
be found by the upcall of the response. However, a monitor gets removed only in the invalid state.
Once that state is reached, all blocking waits have been signalled and new invocations that just got
the monitor prior to its removal from the list of monitors do not block anymore due to the invalid
state. Due to the broadcast, any number of waiting methods always get resumed. Due to the smart
pointers, all resumed methods can complete their processing without loosing access to the monitor. Of
course, there is always only one method that consumes the query identifier and there happen further
state changes so that not every resumed method sees the same state. However, all methods related
to a particular query, work on the same state automaton that is coordinated by the monitor so that all
methods see a consistent state and return consistent status codes.

Figure 5.127 shows the discard method and table 5.53 summarizes the state transitions. Calling
the discard method invalidates the query identifier by switching to the final invalid state. In case
the previous automaton state is pending, a request discard message is sent to the service provider to
notify it about the discarded request. Since there can be no pending state if the service requestor is
not connected to a service provider and since the mutex M1 is not released after saving the previous
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Automaton state on invocation Action

pending block in wait of monitor
got disconnected rush through wait
valid answer rush through wait
invalid rush through wait

State after wait is passed New automaton state Action Returned status

pending pending transition b, do nothing cancelled
got disconnected invalid transition i, consume identifier disconnected
valid answer invalid transition e, consume identifier and return answer ok
invalid invalid transition f, do nothing wrong identifier

Table 5.52: The state transitions performed by the receive wait method.

Automaton state on invocation New automaton state Action Returned status

pending invalid transition k, consume identifier ok
got disconnected invalid transition i, consume identifier ok
valid answer invalid transition e, consume identifier ok
invalid invalid transition f wrong identifier

Table 5.53: The state transitions performed by the discard method.

automaton state so that there can no disconnect interfere, it would not be necessary to also check the
connected flag before sending the request discard message. In principle, it is not necessary to inform
the service provider about a discarded response but that allows the service provider to safe resources
by not providing responses that are not needed anymore and just ignored at the service requestor.

The discard method can only interfere with a concurrent discard at the service provider. Responses
that were already on their way to the service requestor but did not arrive before the client side discard
method has been invoked are properly rejected by the callback handler for incoming answers. Request
discard messages that were already on their way to the service provider but did not arrive before either
the server side answer or discard method has been invoked are properly rejected by the callback
handler for the request discard message.

The discard method does not return a communication error since that can be ignored. In the worst
case, a response not needed anymore gets unnecessarily calculated and returned to the client.

Finally, the synchronous query method is shown in figure 5.128. It is simply composed of the
already known methods for handling an asynchronous query.
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:Query Client M2:RecursiveMutex M1:RecursiveMutex

:Client Side

Query Monitor

available when query
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execute state automaton
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list of monitors ?
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Figure 5.127: The internals of the client side discard method.

:Query Client

call receiveWait

call request
query

result

ok, answer

result

user interface

result = ok ?
no yes

result <>
no yes

ok ?

call discard for this query identifier

A

and ignore result of discard method
(needs to be called since receiveWait
can return cancelled as result)

Figure 5.128: The internals of the client side query method.
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The Server Part The server side internals of the query server class are shown in figure 5.129. The
additional attributes compared to the send pattern are explained in table 5.54. The handler for requests
accepts the incoming requests. The first argument is the this-pointer, the second argument the content
of the communication object of the request, the third argument the address of the service requestor
that invokes the query and the fourth argument the client side query identifier that has to be returned
with the response. The handler for discarding a request accepts the R4 message. Its first argument is
the this-pointer, the second argument the address of the service requestor and the third argument the
client side query identifier. The address and the query identifier allow to identify the request that is to
be discarded.

A
R

Query Server

−
−
−
−
−

−

−

:SmartComponent*
serviceName:string
serverReadyFlag:bool
:listOfClients<SmartPtr<InterfaceObjectOutQueryServer>>
M10:RecursiveMutex

handler:QueryServerHandler<R,A>&

:list<SmartPtr<Server Side Query Monitor>>

// maintains the addresses of connected clients
// indicates whether service is accessible
// name of the service
// provides access to component management

// protects access to the list of clients

// handler for processing incoming queries

// list of monitors

−
server:InterfaceObjectInQueryServer*
serverAddress:Address

−
−

handlerForConnect(:void*,:const Address,:const long) : void [static]

−

−

queryIdentifierCounter:long− // maintains unique server side query identifiers

// interface object for incoming messages
// own address of this server instance

handlerForDisconnect(:void*,:const Address) : void [static]
handlerForDiscard(:void*,:const Address) : void [static]

// comm. callback
// comm. callback
// comm. callback

− handlerForRequest(:void*,:const Any&,:const Address,:const long) : void [static]

+ member functions of user interface

// comm. callback
handlerForRequestDiscard(:void*,:const Address,:const long) : void [static] // comm. callback−

Figure 5.129: Details of the internals of the query server class.

Attribute Description

:list � SmartPtr � Server Side Query Monitor ��� The list of monitors holds the monitors of the currently active queries
that are not yet answered. It is protected by the mutex M10.

queryIdentifierCounter:long The counter provides the unique server side identifier that is assigned
to every query. It is protected by the mutex M10.

Table 5.54: Description of the server part attributes.

All active queries are represented by their own monitor instance that is shown in figure 5.130.
At the query server, there are currently no blocking methods so that the monitor is solely used to
coordinate the access to its attributes. As long as one does not have to wait for a particular state, a
simpler structure would do where one even could use the mutex M10 to protect the automaton from
concurrent modifications.

The query identifiers manage the basic version of an asynchronous completion token [138]. A new
identifier that is unique within the service requestor is generated with every request and is forwarded
to the service provider. At the service provider, every incoming request gets another identifier which
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+

+

cqid:long
+

Monitor

sqid:long
// client side query identifier
// server side query identifier

Server Side Query Monitor

state:Automaton
// address of client to which that request/answer belongs to:Address
// {pending, got disconnected, invalid}+

+ :R // received request (communication object type provided by template instantiation)

Figure 5.130: The server side representation of an active query.

is unique within the service provider. This is necessary since requests of several service requestors
can be labeled with the same client side identifier. Thus, the client provided identifiers are unique only
in combination with the client address. The server side identifier is forwarded to the request handler
and has to be returned with the answer. It now allows to identify to which open request the answer
belongs to and indicates to which service requestor the answer has to be sent to. The answer message
contains both the answer itself and the before received client side identifier. The client side identifier
then allows to assign the received answer to the proper open request.

n

o

q s

m

pinvalid

disconnected
got

pending

r

Figure 5.131: The server side state automaton to manage the lifecycle of a query.

Figure 5.131 shows the server side state automaton of a query. A new request initializes its state
automaton to the pending state which indicates that the answer still has to be provided. Providing the
answer in the pending state performs the state transition o to the final invalid state in which the monitor
is removed from the list of monitors which invalidates the server side query identifier. If a client gets
disconnected, all its open queries are set to the got disconnected state at the server by executing
the state transition q. This prevents the server from sending back answers to already disconnected
clients or even to clients not existing anymore. Thus, answers that are provided in either the got
disconnected or the invalid state are ignored. Providing the answer or invoking the check method in
the got disconnected state performs the state transition s and thus consumes the query identifier. The
query identifier is also always consumed by a discard, that either executes the state transition o or s,
independently of whether the discard results from the client side or the server side discard method.

The Server Side Administration Internals The server part of the connect and the server initi-
ated disconnect comply with the generic form of those administrative interactions. The relevant part
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of the handler for the disconnect message is shown in figure 5.132. It receives the client address and
iterates through the list of monitors to perform the transition q for all open queries of that client. The
mutex M10 inhibits any methods that need to interact with a connected client while the disconnect is
active.

:Query Server M10:RecursiveMutex

once the disconnect arrived at the
service provider, there can be no more
requests from that client belonging to
the currently closed connection. Thus,
no affected request misses the state
change.

handlerForDisconnect

callback interface

up
ca

ll 
R

2

if monitor is from disconnecting client then:
pending −> got disconnected
got disconnected −> got disconnected
invalid −> invalid

for all monitors in list of monitors

send A2 message

list of clientsremove interface object from

to client
delete interface object

Figure 5.132: The internals of the server side handler for the disconnect message.

The Server Side Service Internals Figure 5.133 shows the handler for incoming requests. The
handler creates a server side query monitor that is added to the list of monitors. In case that something
went wrong either when creating the monitor or when adding it to the list of monitors, one cannot
simply drop the request since the client has to know that it cannot expect an answer. Thus, the handler
sends the answer message with an error status to indicate that the contained communication object is
not valid. In case that nothing went wrong, the user provided handler is invoked to process the request.

The answer method is shown in figure 5.134. The answer is sent only in case the corresponding
monitor is in the pending state. The got disconnected and the invalid state indicate that the provided
answer is not needed anymore. Thus, the provided response just gets discarded and no response
message is sent. At the service provider, the got disconnected and invalid states are reached only after
either a response or a discard has been sent so that there are no more pending method calls at the
client or after the client already released all its blocking calls due to a disconnect or a discard. In all
those cases, the not sent message does not leave any pending calls behind. The query identifier gets
consumed by the state transitions o and s.

Since the mutex M10 is hold for the whole answer method, there can be no interfering disconnect.
Thus, one does not have to check whether the client is still accessible before sending the response.
The pending state is sufficient to ensure the availability of the corresponding service requestor.

The check method is shown in figure 5.135. Due to the handler based interface there is no simple
way to abort the processing of responses not needed anymore. The check method allows to check
whether the response is still needed. Regular checks are in particular reasonable with resource inten-
sive request processings. Again, the query identifier is consumed by the state transition s.

Figure 5.136 shows the internals of discard method. In case it gets invoked on a query in the
pending state, it sends the answer message but with the status set to error to indicate that the response
does not contain a valid communication object. The handler for incoming responses at the service
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M10:RecursiveMutex

:Server Side

Query Monitor

:Query Server Handler

− set automaton state to

− store client address
− store client side query identifier

− generate new server side query identifier

− store request communication object

pending

:Query Server

<<new>>

send answer message

with status error

yesno

handlerForRequests

callback interface

handleQuery(...)

B A

add this instance to the list of monitors

no error when creating monitor and
when adding it to the list of monitors ?

to client

Figure 5.133: The internals of the server side request handler.

requestor can then appropriately set the state automaton of the corresponding monitor. The query
identifier gets consumed by the state transitions o and s. The mutex M10 is applied in the same way
as with the answer method.

Figure 5.137 illustrates the internals of the request discard handler. It sets the state of the corre-
sponding monitor to invalid and removes the monitor from the list of monitors. Furtheron, all methods
return a wrong identifier status. The server side answer method, the server side discard method and
the client side discard method never interfere with each other. At the client, in the worst case, a not
anymore needed response message with either an ok or an error status arrives. That gets properly
discarded either due to a not anymore existing monitor or due to the monitor’s invalid state. At the
server, in the worst case, a request discard message arrives for a not anymore existing request. It also
gets properly discarded either due to the not anymore existing monitor or due to its invalid state.
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M10:RecursiveMutex

:Server Side

Query Monitor

answer

:Query Server

yesno

wrong identifier
status

server side query

user interface

send answer message
if answer is to be sent:

with status ok

identifier in list of monitors ?

remove monitor from list of monitors

pending −> invalid / send answer / return status: ok
got disconnected −> invalid / don’t send answer / return status: disconnected

execute state automaton:

invalid −> invalid / don’t send answer / wrong identifier

Figure 5.134: The internals of the server side answer method.

:Server Side

Query Monitor

check

:Query Server

yesno

server side query

user interface

wrong identifier
status

identifier in list of monitors ?

M10:RecursiveMutex

execute state automaton:

invalid −> invalid / return status: wrong identifier
got disconnected −> invalid / return status: disconnected
pending −> pending / return status: ok

remove monitor from list of monitors
in case of invalid state

Figure 5.135: The internals of the server side check method.
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M10:RecursiveMutex

:Server Side

Query Monitor

discard

:Query Server

yesno

wrong identifier
status

server side query

user interface

send answer message
if answer is to be sent:

with status error

identifier in list of monitors ?

remove monitor from list of monitors

execute state automaton:

invalid −> invalid / don’t send answer / return status: wrong identifier
got disconnected −> invalid / don’t send answer / return status: ok
pending −> invalid / send answer / return status: ok

Figure 5.136: The internals of the server side discard method.

:Server Side

Query Monitor

handlerForRequestDiscard

callback interface

:Query Server M10:RecursiveMutex

query identifier in
list of monitors ?

yesno

B

set automaton state to invalid

list of monitorsremove monitor from

Figure 5.137: The internals of the server side request discard handler.
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5.6.7.4 The Push Newest Pattern

The internals of the push patterns are easily graspable once one is familiar with the internals of the
send and the query pattern.

The Client Part The client side internals of the push newest client class are shown in figure 5.138.
The pattern specific attributes are summarized in table 5.55. Since the monitor exists as long as the
client instance exists, one can handle both the connection status and the subscription status via the
state automaton inside the monitor and one does not need to buffer the blocking modes. Thus, the
push client does neither require the mutex M2, the list of monitors, the connected flag, a subscribed
flag, the user blocking flag nor the component blocking flag. Since there is only one monitor, one does
not need to search for it but can access it directly.

−
−
−

Push Newest Client

:SmartComponent*
:WiringSlave*

D

// provides access to wiring slave
// provides access to component management

monitorConnect:AdministrativeMonitor
monitorDisconnect:AdministrativeMonitor

// monitor of administrative interaction
// monitor of administrative interaction−

M1:RecursiveMutex
connectionIdentifierCounter:long
subscriptionIdentifierCounter:long
monitor:ClientSidePushNewestMonitor
managedPort:RecursiveMutex
managedPortFlag:bool
portname:string

client:InterfaceObjectInPushNewestClient*
clientAddress:Address
servant:InterfaceObjectOutPushNewestClient*

// protects the server connection from changes
// maintains the connection identifier
// maintains the subscription identifier
// the singular client side monitor
// protects the managedPortFlag from concurrent access
// indicates whether client is exposed as port
// name of the port if exposed as port

// interface object incoming messages
// own address of this client instance
// interface object outgoing messages

−
−
−
−
−
−
−

−
−
−

handlerForAcknowledgmentConnect(:void*,:const long,:const long) : void [static]
handlerForAcknowledgmentDisconnect(:void*) : void [static]
handlerForServerInitiatedDisconnect(:void*,:const long) : void [static]
callbackSID(:void*,connectionIdentifier:const long) : void [static]
callbackBlocking(void*,:const bool) : void [static]
callbackWiringConnect(void*,:const string&,:const string&) : void [static]
callbackWiringDisconnect(:void*) : void [static]

−
−
−
−
−
−
−

− handlerForUpdate(:void*,data:const Any&,sid:const long):void [static]

member functions of user interface+

Figure 5.138: Details of the internals of the push newest client class.

Attribute Description

monitor:ClientSidePushNewestMonitor The push client requires a singular monitor only since it provides the same
data to all method invocations. Thus, neither a list of monitors nor the
mutex M2 is needed. Since the monitor exists as long as the client instance
exists, no smart pointer is needed.

subscriptionIdentifierCounter:long That counter provides the unique identifier that is assigned to every sub-
scribed session. It allows to identify outdated update messages and is pro-
tected by the mutex M1 as the connectionIdentifierCounter.

Table 5.55: Description of the client part attributes.
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The subscription cannot fail since the required administrative structures are already set up with
the connect. The first argument of the handler for the incoming updates is the this-pointer, the sec-
ond argument the content of the used communication object and the third argument the client side
subscription identifier that was provided with the subscription.

− monitor lock must already be hold
− if blocking indicator is true

and state is subscribed or data
then wait

− keep monitor lock when returning
to allow state check after returning
into user space

+ :long

Client Side Push Newest Monitor

+
+

state:Automaton
sid:long
cid:long+

Monitor

:D+

wait() : void throw()+

disconnectFlag:bool+ // state refinement in connected state
// {disconnected, connected, subscribed, data, invalid}
// subscription identifier
// connection identifier
// update counter

// received update (type of communication
//  object provided by template instantiation)

Figure 5.139: The client side monitor of the push newest pattern.

Figure 5.139 shows the client side monitor of the push newest pattern. The update counter is
used by the getUpdateWait method. The wait method of the monitor blocks only if the state of the
automaton is either subscribed or data since these are the only states in which another update can be
expected. Of course, the blocking indicator must also evaluate to true. The disconnect flag provides
additional information in case of the connected state as explained below.

disconnected connected subscribed data

invalid

a

n

broadcastd f

h

c e

l

m

b

broadcast
k

broadcast
i

g
broadcast

Figure 5.140: The client side state automaton to coordinate the push newest client.

The client side state automaton is shown in figure 5.140. The invalid state is set prior to destroying
the client. In the disconnected state, the client is not connected to a service provider and thus, it is
also not subscribed and there are no valid updates available. In the connected state, it is connected to
a service provider but not yet subscribed and thus, there are again no valid updates available. In the
subscribed state, the client is connected and subscribed to a service provider and awaits its first update
and the data state indicates that at least one valid update has been received since getting subscribed.

The state transition c is performed by a connect, the transition e by a subscribe, the transitions i
and k by an unsubscribe and the transition l by a disconnect. A disconnect always first executes an
unsubscribe. The transitions g and h are performed with a received update.
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The data state is the only state in which the getUpdate method returns a valid update. The getUp-
dateWait method waits for the next update. Thus, it blocks in the subscribed state to get unblocked
with the first update and it blocks in the data state to get unblocked with the next update. Since the
wait of the monitor blocks in the subscribed and the data state, the transitions g, i and k have to
broadcast a signal. The transition h broadcasts a signal since an update remains in the data state but
the getUpdateWait has to be informed about a newly arrived update. Again, one has to check that a
broadcast never releases a blocking method such that it would have to reinvoke the wait. In case of
the transitions g and h, an update arrived and returning from the method call is the desired behavior.
In case of the transitions i and k, an unsubscribe occurred. Again, the desired behavior of the getUp-
dateWait method is to return since from now on no more updates arrive that belong to the subscription
phase in which the getUpdateWait method was invoked. Thus, the client side state automaton of the
push newest pattern and the wait method of the monitor fully comply with the general policy of the
monitors.

The Client Side Administration Internals The add, remove, connect and disconnect methods
work like their equivalents at the other patterns. Of course, a disconnect first performs an unsubscribe
prior to invoking the standard disconnect procedure. Thus, before invoking the unsubscribe, it sets the
disconnect flag to true so that the blocking member functions that get released due to the unsubscribe
can detect that the unsubscribe is part of a disconnect. That is important to return the appropriate status
that indicates the reason for getting aborted. The mutex M1 must not be released in between since
otherwise another subscribe could interfere. Likewise, the subscribe method always first invokes an
unsubscribe. A connect updates the connection identifier inside the monitor and sets the disconnect
flag to false. A subscribe updates the subscription identifier. The subscribe and the unsubscribe
methods are shown in figure 5.141.

M1:RecursiveMutex M1:RecursiveMutex:Push Newest Client :Push Newest Client

Newest Monitor

:Client Side Push

Newest Monitor

:Client Side Push

send subscribe message
to service provider

status

su
bs

cr
ib

e 
/ u

se
r 
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te

rf
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e

no yes
send unsubscribe message
to service provider

un
su
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e 

/ u
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r 
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rf
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e

previous automaton state
subscribed or data ?

previous automaton state
connected ?

yesno

status

unsubscribe

new state
subscribed

new state
connected

Figure 5.141: The internals of the client side subscribe and unsubscribe methods.

The Client Side Service Internals Figure 5.142 illustrates the client side processing of the
update message. In case the update message contains a valid subscription identifier, the received up-
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date is stored in the monitor where it overwrites previously received updates. Furthermore, a signal
is broadcasted. In all other cases, the received message is discarded. Thus, in the connected, dis-
connected and invalid state, outdated messages are recognized since there can be no relevant update
message if the client is not subscribed. In the subscribed and the data state, the sid represents a
valid subscription identifier so that one can identify outdated messages. These can occur in case one
unsubscribes and subscribes in quick succession.

:Push Newest Client :Client Side Push Newest Monitor

handlerForUpdate

callback interface

B

is state either subscribed or data ?
no yes

does subscription identifier
match the one inside the monitor ?

g or h,
store received update,
increment update counteryesno

transition

Figure 5.142: The internals of the client side handler for the update message.

:Push Newest Client :Client Side Push Newest Monitor

getUpdate

user interface

data
subscribed
connected

automaton state:

disconnectFlag

disconnected
invalid

false

data returned:

disconnected
error

no
no

returned status:
ok
no data

yes
no

unsubscribed no
disconnectFlag true disconnected no

Figure 5.143: The internals of the client side getUpdate method.

The getUpdate method is shown in figure 5.143. It does not perform any state transition but checks
the state to decide on the result of the method invocation.

Automaton state on invocation Action

data block in wait of monitor
subscribed block in wait of monitor
connected rush through wait
disconnected rush through wait
invalid rush through wait

Table 5.56: The blocking behavior of the getUpdateWait method.

The getUpdateWait method is shown in figure 5.144 and the blocking behavior is summarized in
table 5.56. The wait method of the monitor blocks only if the blocking condition evaluates to true
and if the automaton is either in the subscribed or data state. Invoking the getUpdateWait method in
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:Push Newest Client
:Client Side Push

Newest Monitor

automaton state = subscribed or data ?

getUpdateWait / user interface

wait on monitor

suspended while waiting

identifier and update counter
save connection identifier, subscription

disconnected / unsubscribed
status

check state automaton according to table 5.56
and return appropriate result

Figure 5.144: The internals of the client side getUpdateWait method.

the subscribed or the data state with a blocking indicator that evaluates to true blocks the method call
until any other state is reached or until the data state is reached again via the transition h due to an
update or until the blocking mode is set to false. In all other cases, the getUpdateWait method passes
the wait of the monitor without getting blocked.

Since one does not generate another monitor with every subscription, one has to carefully check
the situation after having passed the wait. Due to the Mesa-style semantics of the condition variables
of the monitors, there can be further state transitions between getting the signal and resuming the wait.
In the worst case, there cannot only be an unsubscribe and another subscribe but even another connect
to a completely different service provider that might even already sent an update. A getUpdateWait
must never return an update that belongs to a different session than the one it was invoked in. It is not
a problem to return a newer update than that one that released the wait as long as the update belongs
to the same session. Thus, the connection identifier cid, the subscription identifier sid and the update
counter are saved prior to invoking the wait of the monitor to be able to compare the saved values with
the current ones after the wait was passed. The various combinations and their effects are summarized
in table 5.57. An x means that one does not have to care about the value. Due to the cid, the sid and
the update counter, each invocation of the getUpdateWait method can individually detect the reason
which allowed it to pass the wait even though all concurrent invocations work on the same monitor
instance. Thus, the getUpdateWait method never returns a wrong update even if there are further state
transitions prior to getting resumed after a signal.

The Server Part The server side internals of the push newest server class are shown in figure 5.145.
It solely contains already known attributes. Since the server only needs to know whether a connected
client is subscribed and since all subscribed clients get the same updates without requiring the main-
tenance of any individual states and since there are no methods waiting on a particular state, advanced
monitors would be wasted within the push newest server.

With every connected client, the server needs to hold a subscribed flag that indicates whether that
client is subscribed and additionally the client provided subscription identifier csid in case of being
subscribed. Normally, these attributes are stored in a monitor and accessing them is coordinated by
the monitor mutex. However, both a monitor and such a fine-grained locking is wasted with the push
newest server since those attributes are mostly accessed in combination with methods that anyway
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Push Newest Server

−
−
−
−
−

:SmartComponent*
serviceName:string
serverReadyFlag:bool

D

−

−

−

−

−

−

M10:RecursiveMutex

server:InterfaceObjectInPushNewestServer*
serverAddress:Address

handlerForConnect(:void*,:const Address,:const long) : void [static]
handlerForDiscard(:void*,:const Address) : void [static]
handlerForDisconnect(:void*,:const Address) : void [static]

handlerForSubscribe(:void*,:const Address,:const long) : void [static]
handlerForUnsubscribe(:void*,:const Address) : void [static]

+ member functions of user interface

−

:list<triple<SmartPtr<InterfaceObjectOutPushNewestServer>,subscribedFlag:bool,csid:long>>

Figure 5.145: Details of the internals of the push newest server class.

acquire the mutex M10. Since these mostly iterate through all connected clients, one cannot take
advantage from a more fine-grained locking so that it makes no difference to right away use the mutex
M10. It is important to remember, that the server side upcalls are allowed to acquire the mutex M10
and that the upcalls can thus access these attributes. The advantage of using the mutex M10 is that one
can now extend the list of clients to hold the additional attributes since that list is already protected by
the mutex M10. As shown in figure 5.145, the list of clients contains triples to also hold the subscribed
flag and the csid besides the interface objects.

The Server Side Administration Internals The server parts of the connect, the disconnect
and the server initiated disconnect of the push newest server comply with the generic form of those
administrative interactions. All parts that are related to the list of monitors are removed. The handlers
to execute a subscribe and an unsubscribe are shown in figure 5.146.

M10:RecursiveMutex:Push Newest Server

subscribe / unsubscribe

callback interface for entry of that client in list of clients:
subscribe:

set subscribed flag to true
update subscription identifier

unsubscribe:
set subscribed flag to false

Figure 5.146: The internals of the server side subscribe and unsubscribe handlers.

The Server Side Service Internals The server side user interface consists of the put method.
It acquires the mutex M10 and iterates through the list of clients to send the update message to those
clients where the subscribed flag is set to true. The subscription identifier is individually set to the
value that was provided with the client’s subscription. Finally, it releases the mutex M10.
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State after wait cid sid update disconnect Returned Situation
is passed counter flag status

disconnected x x x x disconnected Client is currently disconnected so that the
method invocation can get no update any-
more.

connected = x x false unsubscribed Client got unsubscribed but is still con-
nected and connection has not been modi-
fied. However, method invocation belongs
to an outdated session.

= x x true disconnected Client gets disconnected and just performs
the unsubscribe.

��� x x x disconnected Client got disconnected and thus also un-
subscribed and then reconnected, perhaps
even to a different service provider. Method
invocation belongs to an outdated session.

subscribed = = x x cancelled The connection and the subscription have
not been changed and there is still no update
available so that blocking mode was set to
false at least once while waiting so that one
has to return.

= ��� x x unsubscribed Client got unsubscribed and again sub-
scribed so that the method invocation be-
longs to an outdated session.

��� x x x disconnected Client got disconnected and again con-
nected and subscribed so that the method
invocation belongs to an outdated session.

data = = = x cancelled No new update arrived and nothing changed
with respect to the connection and the sub-
scription so that blocking mode was set to
false at least once while waiting.

= = ��� x ok Received an update.
= ��� x x unsubscribed Client got unsubscribed and subscribed

again and even an update was already re-
ceived but method invocation belongs to an
outdated session.

��� x x x disconnected Client got disconnected, reconnected and
subscribed again and even an update was
already received but method invocation be-
longs to an outdated session.

Table 5.57: The various situations that can be encountered after passing a wait.
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5.6.7.5 The Push Timed Pattern

The internals of the push timed pattern are almost identical to that of the push newest pattern. The
major difference is the acknowledgment message for the subscribe that is needed to return the current
activation state of the server. Furthermore, the server informs any subscribed client about getting acti-
vated or deactivated by means of an administrative (C/U) interaction and the client can get the current
activation state and the cycle time of the server by means of an administrative (B/U) interaction.

The Client Part The client side internals of the push timed client class are shown in figure 5.147.
The activation state and the cycle time is queried by means of an administrative (B/U) interaction
so that this interaction cannot be interrupted. That does not matter since the server part solely reads
the server state and the cycle time. Using an administrative (B/U) interaction has the advantage that
at a client always only one getServerInfo method is active at a time which saves from inadequate
overhead. The getServerInfo does not interact with the monitor of the service related interaction and
solely returns the answer to the user level.

−
−
−

Push Timed Client

:SmartComponent*
:WiringSlave*

D

// provides access to wiring slave
// provides access to component management

monitorConnect:AdministrativeMonitor
monitorDisconnect:AdministrativeMonitor

// monitor of administrative interaction
// monitor of administrative interaction−

monitorServerInfo:AdministrativeMonitor
monitorSubscribe:AdministrativeMonitor // monitor of administrative interaction

// monitor of administrative interaction
M1:RecursiveMutex
connectionIdentifierCounter:long
subscriptionIdentifierCounter:long
monitor:ClientSidePushTimedMonitor
managedPort:RecursiveMutex
managedPortFlag:bool
portname:string

client:InterfaceObjectInPushTimedClient*
clientAddress:Address
servant:InterfaceObjectOutPushTimedClient*

// protects the server connection from changes
// maintains the connection identifier
// maintains the subscription identifier
// the singular client side monitor
// protects the managedPortFlag from concurrent access
// indicates whether client is exposed as port
// name of the port if exposed as port

// interface object incoming messages
// own address of this client instance
// interface object outgoing messages

−
−
−
−
−
−
−

−
−
−

handlerForAcknowledgmentConnect(:void*,:const long,:const long) : void [static]
handlerForAcknowledgmentDisconnect(:void*) : void [static]
handlerForServerInitiatedDisconnect(:void*,:const long) : void [static]
callbackSID(:void*,connectionIdentifier:const long) : void [static]
callbackBlocking(void*,:const bool) : void [static]
callbackWiringConnect(void*,:const string&,:const string&) : void [static]
callbackWiringDisconnect(:void*) : void [static]

−
−
−
−
−
−
−

− handlerForAcknowledgmentSubscribe(:void*,:const long):void [static]
handlerForActivationState(:void*,:const long):void [static]
handlerForServerInformation(:void*,:const double,:const long):void [static]
handlerForUpdate(:void*,data:const Any&,sid:const long):void [static]

−
−
−

member functions of user interface+

−
−

Figure 5.147: Details of the internals of the push timed client class.

Figure 5.148 shows the client side monitor of the push timed pattern. Again, the monitor exists as
long as the client instance exists and its overall structure is the same as that of the push newest pattern.
Both, the update counter and the activation counter are used by the getUpdateWait method. The wait
method of the monitor blocks only if the state of the automaton is either active or data since these are
the only states in which another update can be expected.
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− monitor lock must already be hold
− if blocking indicator is true

and state is active
then wait

− keep monitor lock when returning
to allow state check after returning
into user space

or data

+ :long

Monitor

Client Side Push Timed Monitor

+
+

state:Automaton
sid:long
cid:long+

+ :long

:D+

wait() : void throw()+

+ disconnectFlag:bool // state refinement in connected state
// {disconnected, connected, subscribed, active, data, invalid}

// update counter
// activation counter
// connection identifier
// subscription identifier

// received update (type of communication
//  object provided by template instantiation)

Figure 5.148: The client side monitor of the push timed pattern.
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Figure 5.149: The client side state automaton to coordinate the push timed client.

The client side state automaton is shown in figure 5.149. Compared to the state automaton of
the push newest pattern, it is extended by the active state and the subscribed state carries a different
semantics. Since the client can get updates only as long as the server is active, one additionally has
to distinguish a passive and an active server. In the subscribed state, the client is connected and
subscribed to a passive server. In the active state, the client is connected and subscribed to an active
server but there are no updates yet available. In the data state, the client is connected and subscribed
to an active server and at least one update has been received yet.

The subscribe performs the transition e or u depending on the activation state of the server as
returned by the acknowledgment of the subscribe. In case the server state switches from active to
passive, the upcall handler for the activation state message performs the transition t and x, respectively.
In case of switching from passive to active, the transition s is executed. An unsubscribe performs one
of the transitions i, k and v. A disconnect always first executes an unsubscribe. The transitions w and
h are performed when receiving an update.

The data state is the only state in which the getUpdate methods returns a valid update. The
getUpdateWait method blocks in the active state to wait for the first update and in the data state to
wait for the next update. Thus, the transitions v, t, w and i and x have to broadcast a signal. The
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transition h broadcasts a signal since the state automaton remains in the data state with receiving
an update but the getUpdateWait method has to be notified. In case of the transitions w and h, the
expected update arrived. In case of the transitions i and v, an unsubscribe occurred. Thus, from now
on no more updates arrive that belong to the subscription phase in which the getUpdateWait method
was invoked. In case of t and x, the server got into the passive mode and the regular update cycle is
disturbed. In all cases, returning from the method call is the desired behavior. Thus, the client side
state automaton of the push timed pattern and the wait method of the monitor comply with the general
policy of the monitors.

The Client Side Administration Internals The subscribe message specifies the update rate
in terms of whole-numbered multiples of the server update cycle and awaits the acknowledgment
message to know whether to perform the state transition e or u. While waiting for the acknowledgment
message, there can be no messages from the server that report the activation state and that would
interfere with the state transitions of the subscribe procedure. The activation state is reported to
subscribed clients only. Thus, a client gets a report on the activation state earliest after the upcall of
the subscribe message at the server released the mutex M10. Then, however, the acknowledgment
message was already sent and due to the kept order of messages, both cannot interfere.

The handler for the activationState message acquires the monitor lock to access the state automa-
ton and then performs one of the transitions s, t or x as described above. Furthermore, it increments
the activation counter that works in the same way as the update counter. It allows to detect that the
server got into the passive mode in between which breaks the regular update rate.

The Client Side Service Internals Figure 5.150 shows the client side processing of the update
message. If the update message contains a valid subscription identifier and if the state automaton is
in the active or data state, then the received update is stored in the monitor and the state transition
w or h is executed. It is important to note that no update message can be received in the subscribed
state since that also indicates that the server is not active. The activation state of the server can be
changed by the server. As soon as the server performs a state change, it reports that to all subscribed
clients. Since messages keep their order and since the server does not send any updates in the passive
state, there can be no late update messages after the passive state was reported. In principle, the
check of the subscription identifier could also be omitted since in case of the push timed pattern, the
subscribe possesses an acknowledgment. Thus, even in case of an unsubscribe and a subscribe in
quick succession, there can be no outdated update message after the subscribe was acknowledged.
This again holds due to the kept order of messages. Outdated update messages could arrive only
while the subscribe is in progress but would then be rejected by the connected state. The subscribe
procedure sets the state automaton to subscribed or active only after the acknowledgment arrived.

The getUpdate method does not perform any state transitions but checks the state to decide on
the result of the method invocation. It returns error in case the automaton is in the invalid state,
disconnected in the disconnected state, unsubscribed or disconnected in the connected state depending
on the disconnect flag, not activated in the subscribed state and no data in the active state. It returns
the available data with ok in the data state.

The getUpdateWait method has the same structure as the getUpdateWait method of the push
newest pattern and its blocking behavior is summarized in table 5.58. Again, one has to carefully
check the situation after having passed the wait. In contrast to the push newest pattern, one now also
has to take into account the activation counter. Tables 5.59 and 5.60 summarize the various combina-
tions and how they are handled.
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:Push Timed Client :Client Side Push Timed Monitor

handlerForUpdate

callback interface

B

is state either active or data ?
no yes

does subscription identifier
match the one inside the monitor ?

w or h,
store received update,
increment update counteryesno

transition

Figure 5.150: The internals of the client side handler for the update message.

Automaton state on invocation Action

data block in wait of monitor
active block in wait of monitor
subscribed rush through wait
connected rush through wait
disconnected rush through wait
invalid rush through wait

Table 5.58: The blocking behavior of the getUpdateWait method.

The Server Part The server side internals of the push timed server class are shown in figure 5.151.
Again, no advanced monitors are used and the list of clients is enriched in the same way as in case of
the push newest server. In addition, it contains the update rate and the update counter that manage the
individual update rates.

The Server Side Administration Internals The server parts of the connect, the disconnect and
the server initiated disconnect procedures of the push timed server comply with the generic form of
those administrative interactions. All parts that are related to the list of monitors are removed. The
handler for the unsubscribe message is the same as the one of the push newest pattern. The subscribe
message additionally provides the individual update rate for the subscription. The handler of the
subscribe message initializes the update counter to 1 so that the client gets the next available update.
The handler returns the current activation state by sending the acknowledgment message before it
releases the mutex M10.

The handler to process the getServerInformation message acquires the mutex M10, reads the
values of the activation state and the cycle time and then sends the response before it releases the
mutex M10.

The Server Side Service Internals The start method registers the push timed server at the
timer of the component management class and notifies all subscribed clients about the state change.
The timer invokes the static callback timer method which then invokes the user provided handler. It
depends on the load of the user provided handler whether one can use a passive handler since one
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State after wait cid sid activation update disconnect Returned Situation
is passed counter counter flag status

disconnected x x x x x disconnected Client is currently disconnected so
that the method invocation cannot get
any update anymore.

connected = x x x false unsubscribed Client got unsubscribed but is still
connected and connection has not
been modified. However, method in-
vocation belongs to an outdated ses-
sion.

= x x x true disconnected Client gets disconnected and just per-
forms the unsubscribe.

��� x x x x disconnected Client got disconnected and thus also
unsubscribed and then reconnected,
perhaps even to a different service
provider. Method invocation belongs
to an outdated session.

subscribed = = = x x — (not possible since the subscribed
state can be reached only with at
least a different cid, sid or activation
counter).

= = ��� x x not activated The connection and the subscription
have not been changed but the server
got deactivated meanwhile so that the
update cycle is noncontinuous and
one has to return.

= ��� x x x unsubscribed Client got unsubscribed and again
subscribed so that the method invoca-
tion belongs to an outdated session.

��� x x x x disconnected Client got disconnected and again
connected and subscribed so that the
method invocation belongs to an out-
dated session.

Table 5.59: The various situations that can be encountered after passing a wait - part one.

must not block the timer activities. The start method always first invokes a stop.
The handler invocation is solely a notification that another update is due and only the put method

sends updates to subscribed clients. The proper update rate depends on properly calling the put
method. In case the server is activated, it iterates through the list of subscribed clients and decre-
ments the individual update counters. An update is sent to a subscribed client if its update counter
reaches zero. The update counter is then reinitialized to the client provided update rate.

In case of an active server, the stop method removes the timer callback from the component’s
timer and notifies the subscribed clients on the state change. Furthermore, it resets all update counters
to 1 so that subscribed clients get the first update in case of reactivation.
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Push Timed Server

−
−
−
−
−

:SmartComponent*
serviceName:string
serverReadyFlag:bool

D

M10:RecursiveMutex
:list<quintuple<SmartPtr<InterfaceObjectOutPushTimedServer>,subscribedFlag:bool,csid:long,rate:long,cnt:long>>

active:bool
cycle:double

handler:PushTimedHandler<D>&

−

−

−

−

−

server:InterfaceObjectInPushTimedServer*
serverAddress:Address

handlerForConnect(:void*,:const Address,:const long) : void [static]
handlerForDiscard(:void*,:const Address) : void [static]
handlerForDisconnect(:void*,:const Address) : void [static]

−

callbackTimer(:void*) : void [static]

− handlerForSubscribe(:void*,:const Address,:const long) : void [static]
handlerForUnsubscribe(:void*,:const Address) : void [static]−
handlerForServerInformation(:void*) : void [static]−

+ member functions of user interface

−

−
−

// activation state
// cycle time of the server

// user level handler invoked via timer callback

// callback timer (component management)

Figure 5.151: Details of the internals of the push timed server class.
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State after wait cid sid activation update disconnect Returned Situation
is passed counter counter flag status

active = = = x x cancelled The connection, the subscription and
the activation have not been changed
so that the blocking mode was set to
false at least once while waiting for
the first update from the server so that
one has to return.

= = ��� x x not activated Server got deactivated and activated
again so that the update cycle is non-
continuous and one has to return.

= ��� x x x unsubscribed Client got unsubscribed and sub-
scribed again and no update is yet
received but method invocation be-
longs to an outdated session.

��� x x x x disconnected Client got disconnected, reconnected
and subscribed again and server is ac-
tive but method invocation belongs to
an outdated session.

data = = = = x cancelled No new update arrived and nothing
changed with respect to the connec-
tion, the subscription and the activa-
tion so that blocking mode was set to
false at least once while blocking on
the wait.

= = = ��� x ok Received an update.
= = ��� x x not activated The connection and the subscription

have not been changed but the server
got deactivated meanwhile so that the
update cycle is noncontinuous and
one has to return.

= ��� x x x unsubscribed Client got unsubscribed and sub-
scribed again and even an update was
already received but method invoca-
tion belongs to an outdated session.

��� x x x x disconnected Client got disconnected, reconnected
and subscribed again and even an up-
date was already received but method
invocation belongs to an outdated
session.

Table 5.60: The various situations that can be encountered after passing a wait - part two.
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5.6.7.6 The Event Pattern

The internals of the event pattern are best understood by comparing its client part with the client part
of the query pattern and its server part with the server part of a push pattern. At the client side, each
event activation has its own monitor instance since an event can handle any number of concurrent
activations each with its own parameters. At the server side, the put method triggers the evaluation
of the event condition which decides for each activation whether to fire. However, in contrast to the
push server, it contains the full server side structures to handle an arbitrary number of activations per
client. These are comparable to the structures of the query server pattern.

The Client Part The client side internals of the event client class are shown in figure 5.152. Since a
client can invoke any number of event activations, the server has to be able to reject activations. Thus,
the activation is based on an administrative (B/U) interaction that returns a status indicating whether
the activation was accepted. Each event activation has its own monitor dynamically generated monitor
instance. These are all listed in the list of monitors. Each activation has a unique activation identifier
that compares to the unique identifiers of the active queries of the query pattern.

+ member functions of user interface

−
−

Event Client

:SmartComponent*
:WiringSlave*

E
P

// provides access to wiring slave
// provides access to component management

monitorConnect:AdministrativeMonitor
monitorDisconnect:AdministrativeMonitor
monitorActivate:AdministrativeMonitor
M1:RecursiveMutex
connectedFlag:bool
connectionIdentifierCounter:long
M2:RecursiveMutex
:list<SmartPtr<Client Side Event Monitor>>
activationIdentifierCounter:long
managedPort:RecursiveMutex
managedPortFlag:bool
portname:string
userBlockingFlag:bool
componentBlockingFlag:bool // stores component blocking mode for initialization purposes

// stores user blocking mode for initialization of new activations

// monitor of administrative interaction
// monitor of administrative interaction
// monitor of administrative interaction
// protects the server connection from changes
// indicates whether client is connected to a server
// maintains the connection identifier
// protects the list of monitors
// list of monitors
// maintains unique client side event activation identifiers
// protects the managedPortFlag from concurrent access
// indicates whether client is exposed as port
// name of the port if exposed as port

handler:EventHandler<P,E>& // handler for processing firing activations

client:InterfaceObjectInEventClient*
clientAddress:Address
servant:InterfaceObjectOutEventClient*

// interface object incoming messages
// own address of this client instance
// interface object outgoing messages

handlerForAcknowledgmentConnect(:void*,:const long,:const long) : void [static]
handlerForAcknowledgmentDisconnect(:void*) : void [static]
handlerForServerInitiatedDisconnect(:void*,:const long) : void [static]
callbackSID(:void*,:connectionIdentifier:const long) : void [static]
callbackBlocking(void*,:const bool) : void [static]
callbackWiringConnect(:void*,:const string&,:const string&) : void [static]
callbackWiringDisconnect(:void*) : void [static]

handlerForAcknowledgmentActivate(:void*,:const long) : void [static]
handlerForEvent(:void*,:data:const Any&,:aid:const long) : void [static]

−
−
−
−
−
−
−
−
−
−
−
−
−
−

−

−
−
−

−
−
−
−
−
−
−

−
−

Figure 5.152: Details of the internals of the event client class.

Figure 5.153 shows the client side monitor of the event pattern. The event mode denotes the
activation mode that is either single or continuous. The firing counter is used in continuous mode
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− keep monitor lock when returning
to allow state check after returning
into user space

and state is active
and event mode is single

− if blocking indicator is true
− monitor lock must already be hold

then wait
− if blocking indicator is true

and event mode is continuous
and state is active or event
then wait

Monitor

+

Client Side Event Monitor

+
:EventMode

+
+

:E

wait() : void throw()+

+
+

aid:long
:long

// activation mode {single, continuous}
// firing counter
// client side event activation identifier

// received firing (type of communication
//  object provided by template instantiation)

state:Automaton
// state refinement in invalid state
// {active, event, passive, invalid}

disconnectFlag:bool

Figure 5.153: The client side representation of an event activation.

in the same way as the update counter of the push patterns. The disconnect flag provides additional
information in case of the invalid state to be able to distinguish between a deactivate and a disconnect.
The wait method distinguishes between single and continuous mode since only in continuous mode
more than one firing can occur.

active event passive invalid

active event invalid

si
ng

le
ac

tiv
at

io
n

a

g h i k

broadcast

broadcast

e

c d

f

ac
tiv

at
io

n
co

nt
in

uo
us

a

broadcast

broadcast

broadcast

broadcastg k

m

e

b

fb

h

Figure 5.154: The client side state automaton of an event activation.

The client side state automaton is shown in figure 5.154. The active state indicates that no un-
consumed firing is available and that a firing can occur. In the event state, an unconsumed firing is
available. The passive state indicates that there is no unconsumed firing available and that there will
be no more firing but the event is still activated. Finally, the invalid state indicates that the activation
identifier is already invalid.

Lets first consider the state automaton of an activation in single mode. The activate method
generates a new monitor instance that is initialized to the active state. The transition b is performed
in case the event fires and the transition c in case the firing is consumed. The transitions d, e and f are
performed by a deactivate. In principle, an activation identifier gets invalid with calling the deactivate
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method for it. All activations get invalid by a disconnect.
A firing can solely occur in the active state and the wait method of the monitor thus only blocks

in the active state. Since the state transitions b and e lead from blocking to non-blocking states, these
have to broadcast a signal. In case of the transition b, the firing arrived and in case of the transition e,
a deactivate occurred.

Lets now consider the state automaton of an activation in continuous mode. The transition b is
executed with the first firing and the transition m when a firing is consumed. The next firing then again
executes the transition b. In case a firing has not yet been consumed when the next one arrives, it gets
overwritten as indicated by the transition h. The transitions e and f are executed by a deactivate.

A firing can occur either in the active or the event state and thus, in continuous mode, the wait
method of the monitor blocks in both states. Therefore, one needs to broadcast a signal with the state
transitions b, e and f since these lead from blocking to non-blocking states and one can individually
decide for the transitions g, h and m since these lead from blocking to blocking states. Due to the
desired behavior of the blocking methods, solely the state transition h broadcasts a signal.

The Client Side Administration Internals The add, remove, connect and disconnect methods
work like their equivalents at the other patterns. Since all event activations get invalid with a discon-
nect, the disconnect method removes all monitors from the list of monitors, sets their disconnectFlag
to true and performs the state transition into the invalid state. Due to the smart pointers, the blocking
methods can still access the monitor instance as long as required. The disconnectFlag allows to de-
termine whether a disconnect or a deactivate is the reason for awakening in the invalid state. At the
server part, the affected activations are identified by the client address in the same way as in case of
the query pattern. This procedure is much faster than deactivating one activation after the other.

The activate method is shown in figure 5.155 and it compares to the request method of the query
pattern. Each activation has its own dynamically generated monitor instance which is accessed by
means of an activation identifier. The deactivate method shown in figure 5.156 compares to the
discard method.

The Client Side Service Internals (Single Mode) The try method solely checks the state au-
tomaton and returns the appropriate status code. The get method performs the state transition c and
consumes the firing when invoked in the event state and otherwise returns without a valid firing. The
status code depends on the state of the state automaton.

The getWait and the getNext method get blocked only when invoked in the active state since the
event fires only once. Thus, they get resumed either due to the signal of the blocking mode or due
to the broadcast of b or e. Since b indicates the arrival of the expected firing and since e indicates a
deactivate, in all cases the wait must not be reinvoked which complies with the policy of the monitors.
The structure of the getWait and the getNext methods in the single mode is shown in figures 5.157 and
5.158.

In case the wait of the monitor awakes in the active state, the blocking method was cancelled and
there is still no firing available. In the event state, an unconsumed firing is available and in case of
the passive state, a concurrent method call with the same activation identifier already consumed the
firing. In the invalid state, the activation identifier is not valid anymore either due to a deactivate or
due to a disconnect.

The Client Side Service Internals (Continuous Mode) The try and the get method work in the
same way for the continuous mode taking into account the differences of the state automatons. The
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get method, for example, now performs the state transition m in case it gets invoked in the event state.
In case the getWait method is invoked in the event state, it returns the unconsumed firing and in

case of the invalid state, a wrong identifier status. In both cases, the wait method of the monitor is
not invoked as shown in figure 5.159. The getWait method blocks only in the active state. Thus, it
gets resumed either due to the signal of the blocking mode or due to the broadcast of b or e. Since
b indicates the arrival of a firing and since e indicates a deactivate, in all cases the wait must not be
reinvoked.

In case the getNext method is invoked in the invalid state, it also returns a wrong identifier status.
However, it invokes the wait method in both the active and the event state as shown in figure 5.160.
Thus, it gets resumed either by h or f or by a signal of the blocking mode. The transition h indicates
that the next firing arrived and f notifies the getNext method about a deactivate. In all cases, the wait
must not be reinvoked.

Both the getWait and the getNext method use the firing counter to discriminate various states after
the wait of the monitor was passed. The different states are summarized in table 5.61. The table
applies to both the getWait and the getNext method.

State after wait firing Returned Situation
is passed counter fc status

active = saved fc cancelled No firing arrived so that blocking mode must have been set
to false at least once while waiting.

= saved fc + 1 lost A firing arrived but a concurrent call with the same activation
identifier consumed the firing which is thus lost.

� saved fc + 1 missed/ok Several firings arrived and got consumed so that the expected
one was missed. This can happen due to the Mesa-style se-
mantics of the condition variable. In case the getWait and
getNext methods shall return the very next event firing, this
indicates a missed event firing, otherwise one simply takes
the most recent event firing.

event = saved fc cancelled No firing arrived so that blocking mode must have been set to
false at least once while waiting. Applies only to the getNext
method.

= saved fc +1 ok The expected firing arrived.
� saved fc + 1 missed/ok The very next firing is already overwritten by a successive

one so that one missed an event firing (see above).
invalid disconnectFlag true disconnected Activation got deactivated due to a disconnect, thus return

disconnected instead of not activated.
disconnectFlag false not activated Activation got deactivated.

Table 5.61: The various situations that can be encountered by the getWait and the getNext methods
in the continuous mode after passing a wait.

Now, it is also obvious why one is not allowed to broadcast a signal with the state transition m. If
the getNext method is invoked on the event state, consuming the available firing with the get or getWait
method would wrongly unblock the waiting getNext method. Of course, it is never a good idea to use
the same activation identifier in concurrent calls.

Remark The client side callback handler for incoming firings corresponds to the callback han-
dler for answers of the query pattern. In case a handler is provided with the instantiation of the event
client pattern, the handler is invoked with every firing of each activation. The different activations can
easily be sorted out by means of the activation identifier. Since that handler is located at the client
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part, the strict rules for client side handlers apply.

The Server Part The server side internals of the event server class are shown in figure 5.161. The
first argument of the handler for the activate message is the this-pointer, the second argument the
address of the client that performs the activate, the third argument is the event mode followed by the
client side activation identifier and the last argument is the content of the communication object that
provides the parameters for the event predicate. The third argument of the handler for the deactivate
message is the client side activation identifier that is needed to deactivate the proper activation.

All activations are represented by their own monitor instance that is shown in figure 5.162. At
the event server, there are currently no blocking methods so that the monitor is again solely used to
coordinate the access to its attributes.

Figure 5.163 shows the server side state automaton of an event activation. In single mode, the
transition o is performed with the first firing. In the invalid state, it is not considered by subsequent
tests of the event predicate. In continuous mode, the transition n is performed with each firing. Both
a deactivate and a disconnect always result in the invalid state.

The Server Side Administration Internals The server parts of the connect, the disconnect and
the server initiated disconnect of the event server comply with the generic form of those administrative
interactions. The handler for the disconnect iterates through the list of monitors and sets the state
automatons of all entries belonging to that client to invalid before it removes the monitor instance
from the list. The deactivate does the same but only for the monitor instance with the matching client
address and activation identifier. The activate generates a new monitor instance, initializes it and adds
it to the list of monitors so that the new activation is considered by the next test of the event predicate.
The activate handler also sends the acknowledgment message.

The Server Side Service Internals At the server side, the put method provides the current
state that is to be tested against the activation parameters. The put method acquires the mutex M10
and iterates through all activations. For each activation, it invokes the user provided handler that
implements the event predicate as already illustrated in figure 5.46. Each activation is tested with its
individual activation parameters. Only in case the handler returns true, the event fires and sends the
event message with the event communication object

�
that carries individual results.
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M2:RecursiveMutex M1:RecursiveMutex

Event Monitor

:Client Side

:Event Client

set automaton state to
invalid and state refinement
deactivate flag to true
and broadcast

remove this instance from
the list of monitors, always
ignore errors due to already
removed monitor instances

activate

connectedFlag =

no yes

true ?

<<new>> (smart pointer)

successful ?

user interface

blockingUser(userBlockingFlag)

blockingComponent(componentBlockingFlag)

set automaton state to
invalid,

add this instance to the
list of monitors

side activation identifier, set
event mode and set state
refinement flags to false

generate new client

yesno

suspended while waiting
acknowledgment message from service provider

set automaton state to
active

activation accepted by server ?

yesno

disconnected

send event activate message

communication error
error or

ok

M

M

M

Figure 5.155: The internals of the client side activate method.
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M2:RecursiveMutex M1:RecursiveMutex:Event Client

:Client Side

Event Monitor

identifier valid and keeps
valid due to smart pointer

available when activation

execute state automaton

remove this instance from
the list of monitors

connectedFlag true and
single mode and previous
automaton state active ?

connectedFlag true and
continuous mode and
previous automaton state
active or event ?

deactivate

user interface

no yes

identifier in
list of monitors ?

yes

send event deactivate message

no

to service provider

status is wrong identifier
if previous automaton state
was invalid, else ok

wrong identifier
status

Figure 5.156: The internals of the client side deactivate method.
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:Event Client M2:RecursiveMutex

:Client Side

Event Monitorno yes

getWait (single)

user interface

wrong identifier

list of monitors ?

automaton state
event ?

yes no

cancelled
ok
lost
disconnected
not activated

yes

ok
passive
wrong identifier

automaton state
invalid ?

yes no
wait on monitor

suspended while waiting

yes

automaton state
active ?

no
automaton state
event ?

yes no

automaton state
passive ?

no

perform state transition c

perform state transition c

automaton state
passive ?

yes no

noyes

disconnectFlag
true ?

identifier in

Figure 5.157: The internals of the client side getWait method in single mode.
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:Event Client M2:RecursiveMutex

:Client Side

Event Monitorno yes

getNext (single)

user interface

wrong identifier
automaton state
event or passive ?

yes no

automaton state

automaton state

active ?

event ?

yes no

noyes

automaton state
passive ?

disconnectFlag
true ?

yes

yes

no

no

suspended while waiting

wait on monitor

perform state transition c

passive
cancelled
ok
lost
disconnected
not activated

valid activation identifier ?

Figure 5.158: The internals of the client side getNext method in single mode.
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:Event Client M2:RecursiveMutex

:Client Side

Event Monitorno yes

getWait (continuous)

user interface

automaton state
event ?

wait on monitor

suspended while waiting

ok

status

perform state transition m

wrong identifier

state check after wait

yes no

valid activation identifier ?

Figure 5.159: The internals of the client side getWait method in continuous mode.

:Event Client

:Client Side

Event Monitor

M2:RecursiveMutex

no yes

wrong identifier

wait on monitor

suspended while waiting

state check after wait

status

getWait (continuous)

user interface

valid activation identifier ?

Figure 5.160: The internals of the client side getNext method in continuous mode.
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E
P

S

−
−
−
−
−

:SmartComponent*
serviceName:string
serverReadyFlag:bool

M10:RecursiveMutex

Event Server

:list<SmartPtr<InterfaceObjectEventServer>>

handler:EventTestHandler<P,E,S>& : bool−

:list<SmartPtr<Server Side Event Monitor>>

−

−

−

−

−

−

server:InterfaceObjectInEventServer*
serverAddress:Address

handlerForConnect(:void*,:const Address,:const long) : void [static]
handlerForDiscard(:void*,:const Address) : void [static]
handlerForDisconnect(:void*,:const Address) : void [static]

handlerForActivate(:void*,:const Address,:const long,:const long,:const Any&) : void [static]
handlerForDeactivate(:void*,:const Address,:const long) : void [static]

+ member functions of user interface

−

−

Figure 5.161: Details of the internals of the event server class.

+

+

aid:long
+

Monitor

:EventMode
// client side activation identifier
// event mode {single, continuous}

Server Side Event Monitor

state:Automaton
// address of client to which that activation belongs to:Address
// {active, invalid}+

+ :R // received parameters (comm. object type provided by template instantiation)

Figure 5.162: The server side representation of an event activation.
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Figure 5.163: The server side state automaton to manage the lifecycle of an event activation.
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5.6.7.7 The Wiring Pattern

The wiring pattern is different to the other communication patterns in not requiring communication
objects. Each component can possess at most one wiring slave that handles all ports of a component.
In contrast to the other communication patterns, a wiring master needs not to be connected to a wiring
slave before it can access the ports managed by it. In fact, the connection to the wiring slave that
holds the denoted port is established and removed on-the-fly and seamless to the user. The wiring
pattern internally applies the query pattern to implement the interaction of the wiring master and a
wiring slave. The wiring pattern presents itself as query service with the service name wiring and the
communication object names

�
smartCommWiring, smartCommWiring

�
.

The Wiring Slave Figure 5.164 summarizes the internals of the wiring slave. The wiring slave
does not possess any user accessible methods. A service requestor exposes itself as port by calling
its add and remove methods. These then invoke the internalAdd and internalRemove methods of the
wiring slave with the appropriate parameters. The first argument of the internalAdd method is the
void-casted this-pointer of the service requestor, the next two arguments specify the callback methods
used to invoke a connect/disconnect on the service requestor and the last argument specifies the name
of the port. The returned status code indicates whether the service requestor got registered as port.
The internalRemove method solely requires the name of the port to be removed.

:Wiring Slave *

+
+ ~WiringHandler() throw() [virtual]

WiringHandler(:WiringSlave *) throw(SmartError)

handleQuery(:QueryServer<SmartCommWiring,SmartCommWiring>,:const QueryId,:const SmartCommWiring&) : void throw()+

−

server:QueryServer<SmartCommWiring,SmartCommWiring> *

+
+

handler:WiringHandler *
M:RecursiveMutex
:list<Registered Port Entry>

handleWiring(:const SmartCommWiring&) : SmartCommWiring throw()
internalAdd(:void*,:AddressCallbackWiringConnect,:AddressCallbackWiringDisconnect,:portname:const string&) : StatusCode throw()
internalRemove(portname:const string&) : StatusCode throw()

+

Wiring Slave

−
−
−
−

Wiring Handler

Query Server Handler <SmartCommWiring,SmartCommWiring>

Figure 5.164: Details of the internals of the wiring slave.

The mutex M protects the list of registered ports and also ensures that a service requestor can
not get destroyed while the wiring slave executes one of the callback methods of a registered service
requestor. The internalAdd/internalRemove methods operate in the same way as the signUp/signOff
methods of the component management class. The mutex M is hold by the wiring slave while it stays
in one of the callback methods of a service requestor. Thus, the remove method can not be executed
concurrently and the destruction of the service requestor is delayed in the same way as it is the case
with the signOff method. The internal representation of registered port is illustrated in figure 5.165.
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portname:string
:void*
:AddressCallbackWiringConnect
:AddressCallbackWiringDisconnect

+
+
+
+

Registered Port Entry

Figure 5.165: The representation of a port at the wiring slave.

struct SmartWiring {
string command;
string slaveport;
string servercomponent;
string serverservice;
long status;

}

// {connect, disconnect}

Smart Wiring (Communication Data Structure)

− SmartIDL::SmartWiring wiring;

get(CORBA::Any &) const : void throw()
set(const CORBA::Any&) : void throw()
name() : string throw()

getCommand(command:string&,port:string&,servercomponent:string&,serverservice:string&) : void throw()
setConnect(slaveport:const string&,servercomponent:const string&,serverservice) : void throw()

getStatus(:StatusCode) : void throw()
setStatus(:const StatusCode) : void throw()

+
+
+

+
+

+
+
+

setDisconnect(port:const string&) : void throw()

Communication Object Wiring

// name of communication object: "smartCommWiring"

Figure 5.166: Details of the communication object used inside the wiring pattern.

The wiring slave hosts the server part of the query pattern since the wiring slave has to implement
the instructed wiring. For reasons of simplification, the same communication object is used for the
request and the response. As shown in figure 5.166, the specification of the desired wiring consists of
the name of the port that is to be wired and the name of the component and service to which the port
is to be connected.

The wiring slave receives the specification for a new wiring via the query pattern. The query server
invokes the provided handler with each request and the handler invokes the handleWiring method of
the wiring slave. That acquires the mutex M and iterates through the list of ports. In case of a valid
port name, either the callback method to perform a connect or the one to perform a disconnect are
invoked on the proper service requestor. The handleWiring method returns the status in form of the
communication object and the handler of the query server invokes the answer method of the query
server to complete the interaction. Finally, the mutex M is released.

The Wiring Master Figure 5.167 summarizes the internals of the wiring master. In contrast to the
other communication patterns, the connect and disconnect methods do not connect the wiring master
with a wiring slave. The connect method connects the port slaveport of the component slavecmpt with
the service serversvc of the component servercmpt and the disconnect method resolves the connection
of the designated port.

The internals of the connect method are shown in figure 5.168. First, a new query client instance
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− :SmartComponent*
M:RecursiveMutex
userBlockingFlag:bool

−
−
−

callbackBlocking(:void*,:const bool) : void [static]−

+

// stores user blocking mode for initialization purposes
:list<SmartPtr<QueryClient>> // list of wirings

disconnect(slavecmpt:const string&, slaveport:const string&) : StatusCode throw()
connect(slavecmpt:const string&, slaveport:const string&, servercmpt:const string&, serversvc:const string&) : StatusCode throw()

blocking(flag:const bool) : StatusCode throw()

+
+

Wiring Master

Figure 5.167: Details of the wiring master.

is created that is added to the list of wirings. This allows the blocking method of the wiring master to
invoke the blocking method of the query clients. Next, the query client connects to the wiring slave of
the component slavecmpt by using the reserved service name wiring. The interaction with the wiring
slave is handled by means of a blocking query. Finally, the query client is destroyed. The disconnect
method works in the same way and also creates its own query client instance. Thus, there can be any
number of concurrent method invocations. It has to be noticed that the handler at the wiring slave
always serializes all concurrent requests. The finally active configuration depends on the order the
wiring requests at the wiring slave.
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:QueryClient

Request

:SmartCommWiring

Answer

:SmartCommWiring

M2

:RecursiveMutex

:Wiring Master

<<new>> (smart pointer)

getStatus()

query(Request, Answer)

connect()

blocking(userBlockingFlag)

ok ?

yesno

ok ?

yesno

user interface

connect

disconnect()

<<delete>>

status

Figure 5.168: The internals of the connect method of the wiring master.
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5.7 The Application Builder View on the Approach

Figure 5.169 shows the application builder view on the approach. The externally visible component
interfaces are all composed of the standard communication patterns that are typed by the used com-
munication objects. Thus, one can easily recognize what type of service a component provides, how
it is used and what kind of services are required. The component internal dependencies of services are
only illustrated in case restrictions apply due to the used types of handlers. As can be seen from the
graphical representation, even a tailback can not cause a deadlock in the example setting since there
are no circular dependencies.

query
A,B

query
A,B

query
C,D

query
C,E

query
C,E

query
C,D

tailback
single−threaded
queue

Figure 5.169: The application builder view on the approach.

5.8 Additional Framework Infrastructure

5.8.1 The State Management Pattern

The state pattern supports a master-slave relationship to selectively activate and deactivate states. An
activity can lock a state at the slave to inhibit state changes at critical sections as shown in figure 5.170.
This prevents an activity from being interrupted at an unsuitable point of execution. The state pattern
gives the master precedence for state changes over the slave. As soon as a request for a state change is
received from the master, the slave rejects locks for states that are not compatible to the pending state
change of the master. The requested state change of the master is executed by the slave as soon as all
locks for states affected by the state change are released. The state pattern is, for example, used by the
task monitoring component of the sequencing layer for graceful deactivation of component internal
user activities. User provided handlers at the slave allow for cleanup tasks with a state change.

Figure 5.171 shows an example of a state configuration. A main state can comprise several sub-
states. At the slave, only substates can be locked and the master can only set a main state. At each
point of time, there can be only one main state active but an arbitrary number of substates. At startup
of the slave, the main state neutral is defined by default and all other states are user defined. Each
user defined main state comprises the substate nonneutral by default. This allows to start activities as
soon as the main state neutral is left and to stop them as soon as it is entered.

In case of a requested state change, substates that are not covered by the next main state can not
be locked anymore. As soon as all locks are released of substates that get invalid, the state change is
performed. At first, the quitHandler is invoked with all substates that are not anymore part of the next
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Figure 5.170: The state pattern.

Substate 2
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Substate 3

Substate 1

+ nonneutral
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+ substate 2
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nonneutral

Mainstate 1

Substate
nonneutral

Figure 5.171: States in white ellipses are provided by default. The other states are defined by the
component with startup.

main state. Then, the enterHandler is invoked for all substates that get newly activated with the next
main state. In case the substate nonneutral is affected, the quitHandler is invoked last on it and the
enterHandler first. This simplifies component internal housekeeping activities.

Requesting the main state neutral causes the slave to set the component blocking mode to false
until all locks of substates are released. The effect is that all blocking methods of communication
patterns are cancelled so that the substates get released very quickly and independently of the response
times of other components.

The class diagram of the state pattern is shown in figure 5.172. It is internally based on the query
pattern. The states can be defined by the slave only prior to activating the slave. Afterwards, a master
can get connected to either perform state changes or to ask query the state configuration.

The distinction of main states and substates prevents from activating incompatible subsets of
substates. Of course, in rare cases, one needs all possible combinations of substates which results
in a high number of main states. However, components typically comprise only a small number of
substates.

5.8.2 The Trader Service

The trader service is a stand alone component at which service providers can enroll and where other
components can look up services of a specific type. Both interfaces of the trader service are based on
the query pattern.

A service provider enrolls by providing its component name and its service name. That is the
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State Master

State Change Handler {abstract}

State Slave

getSubStatesWait(mainstate:const string&,states:list<string>&) : StatusCode throw()
getMainStatesWait(states:list<string>&) : StatusCode throw()
getCurrentStateWait(state:string&) : StatusCode throw()
setStateWait(state:const string&) : StatusCode throw()

disconnect() : StatusCode throw()
connect(server:const string&, service:const string&) : StatusCode throw()

remove() : StatusCode throw()
add(:WiringSlave*, port:const string&) : StatusCode throw()

~StateMaster() throw() [virtual]
StateMaster(:SmartComponent*, port:const string&, :WiringSlave*) throw(SmartError)
StateMaster(:SmartComponent*, server:const string&, service:const string&) throw(SmartError)
StateMaster(:SmartComponent*) throw(SmartError)

StateSlave(:SmartComponent*, service:const string&, :StateChangeHandler&) throw(SmartError)
~StateSlave() throw() [virtual]

defineStates(mainstate:const string&, substate:const string&) : StatusCode throw()
activate() : StatusCode throw()
acquire(substate:const string&) : StatusCode throw()
tryAcquire(substate:const string&) : StatusCode throw()
release(substate:const string&) : StatusCode throw()

handleEnterState(state:const string&) : void throw() [pure virtual]
handleQuitState(state:const string&) : void throw() [pure virtual]

blocking(flag:const bool) : StatusCode throw()

+
+
+
+

+
+

+
+

+

+
+
+
+

+
+

+
+
+
+
+

+
+

Figure 5.172: The class diagram of the state pattern.

unique address used by the connect method of a service requestor to access the service provider.
Furthermore, it provides the pattern type and either zero, one or two communication object types de-
pending on the pattern type. The pattern type specifies the type of the communication pattern used by
the service provider and is either send, query, push newest, push timed or event. The communication
object type is given by the name of the used communication object types as provided by name method
of the framework interface of each communication object. With respect to the trader service, the
wiring pattern and the state pattern are considered as communication patterns without communication
objects.

The trader service can be asked for service providers matching a particular type of service. The
desired service is specified by the pattern type and the appropriate number of communication object
types. The trader service returns a list of

�
name of component, name of service

�
tuples denoting all

compatible service providers that are known.
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5.9 Conclusion

Modern architectures for taskable robots like three-layer architectures impose high demands on the
software architecture to become implementable. Without an appropriate software concept, one rarely
is able to exploit the full power of these architectures. Often, a missing software concept is identified
as the bottleneck in implementing a taskable robot and in extending the capabilities of such a system.

Foremost, the encountered difficulties are related to the complexity issue. Taskable robots are
based on a considerable set of different components which require context dependent interactions.
Besides the complexity of interacting components, robotics components are in itself already a chal-
lenge due to the great variety of different algorithms needed to implement the various skills of a
taskable robot.

A general approach to master the complexity issue is the concept of decoupling by drawing clear
boundaries between components. The presented approach dictates no rules for decomposition but
provides support for clear arrangements of component interfaces. This is achieved by standardized
communication patterns that provide a predefined semantics for component interactions. Moving
access modes from the user domain to a predefined set of communication patterns ensures decoupling
and uniform behavior of component interfaces without restricting the component developer in its
component internal architecture.

Conducting all component interactions by communication patterns is the key to dynamic wiring
of components. Dynamic wiring can be seen as the pattern of robotics to make the data flow and the
control flow configurable from outside a component at runtime.

The communication patterns provide an abstraction from the underlying communication system
and achieve the same level of decoupling and the same interface semantics independently of the ca-
pabilities of the used communication mechanism. The communication patterns have been used on
many different communication systems ranging from TCP sockets over a message based system to
the current CORBA based release without changing the interface semantics.

From the component builder view, the separation of communication and algorithms together with
a strict interface semantics significantly reduces the complexity of implementing a component since
the types of external interactions are already predefined. The component builder cannot circumvent
the decoupling concept of the communication patterns.

From the application builder view, the communication patterns simplify reuse and replacement
of components and ensure interoperability by avoiding unwanted and unmanageable side effects in
component interactions. Software for complex sensorimotor systems can be assembled of approved
software components in a puzzle-like manner which significantly reduces the overall system complex-
ity. Furthermore, this avoids starting from scratch with every new application or system and results in
increased robustness.

Of course, a framework can always only focus on some aspects. For example, the described
structures of the communication patterns are not designed with respect to hard realtime capabilities or
quality of service guarantees. The major focus is on decoupling while still adhering to specifics of the
robotics domain. For example, the level of transparency is adjusted to the need of robotics.

In general, the presented approach assists in building and using distributed and loosely coupled
components. It has been successfully applied in several large scale robotic projects ranging from the
collaborative research project SFB 527: Integration of Symbolic and Subsymbolic Mechanisms for
Sensorimotor Systems at the University of Ulm to the industry leaded consortium MORPHA: The
Interaction, Communication and Cooperation between Humans and Intelligent Robot Assistants and
now forms a major part of the robotics open source initiative OROCOS.



Chapter 6

Demos and Applications

6.1 The Robotics Evaluation Area

The robotics evaluation area at the basement of FAW is shown in figure 6.1. Its configuration refers
to the scenario of the SFB 527 (Integration of Symbolic and Subsymbolic Information Processing in
Adaptive Sensorimotor Systems). It reproduces an indoor environment consisting of several rooms.
Their topological configuration allows to choose between alternative paths. The rooms are equipped
with different kinds of furnitures like tables and shelves. Objects can be placed on tables and into
shelves. The overall configuration of the objects is foremost engineered with respect to the vision
capabilities of the robot and to allow grasping even with the simple manipulator of the RWI B21
platform.

Figure 6.1: The robotics evaluation area in the basement of the FAW.
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The robotics evaluation area is not only used to evaluate single components but foremost to evalu-
ate their ordered cooperation. Executing pick-and-place tasks requires a substantial amount of steps to
get accomplished. In particular, changes in the environment during task execution have an impact on
the further task execution plot. Successfully executing tasks in the evaluation area not only requires
a substantial amount of skills, but also their dynamic wiring and configuration to form the desired
behaviors. Figure 6.2 lists most of the components that are available on the RWI B21 platform. The
implementation of all components is based on the SMARTSOFT framework.
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Figure 6.2: Survey on the installed components.

6.2 The Pattern Building Task

The pattern building task makes up a certain pattern of discs on one of the tables in the evaluation
area. In the example, the intentional setting of discs from left to right is yellow, red, blue, green. The
state of the knowledge base when starting the task execution is shown in figure 6.3. The coordinates
of the objects are those perceived by the robot and are maintained and updated in the knowledge base.
The pattern of discs on the table in the foreground must not be destroyed. The robot assumes that the
shelf in the foreground on the right contains a yellow and a blue disc and that the second shelf on the
right in the background contains a red disc in its lowest tray. All other trays of shelves or tables are
either assumed unknown or empty which is not distinguished in the visualization.

In the following, images are referred to by (row/column). Figure 6.4 shows the first part of a
pattern building task. The overall execution time of the pattern building task is approximately 7
minutes and the robot drives with speeds of up to 1 m/s. During task execution, it is allowed to
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Figure 6.3: The state of the knowledge base when starting the example task.

interfere with the task execution by, for example, modifying the configuration of the discs, blocking
passages or by constituting a dynamic obstacle.

The robot first moves to the table where the pattern is to be built (1/1-1/2). It then uses its vision
system to recognize the current occupation of the table (1/3-2/2). In the task net description of the
plot, using the vision system to recognize the current occupation is an action like any other. It can be
applied only if the robot is placed correctly and its result is an update of the content of the knowledge
base. That includes an update of the table and of the objects located on it including the pose of the
table and all perceived discs. Next, the symbolic planner is invoked. The currently available discs
are of the correct color so that solely the missing one has to be added. Due to its current state of
the knowledge base, the robot assumes there is a red disc in the shelf of room 2. Thus, the result of
the symbolic planning step is to move to the shelf, pick the disc, move back to the table and place
it there. The plan is transformed in a task-net to get executed. The first step is to move to the shelf
(2/3-4/1) and to deploy the manipulator (4/2). The robot then uses the vision system to acknowledge
its assumptions on the state of the shelf including updated positions (4/3-5/1). Thereto, the arm is
moved downwards to not interact with the field of vision of the cameras. In the example, both trays
contain a red disc. The configuration does not match the expected one. However, the symbolic plan
only asks the robot to get a red disc from that shelf and leaves it to the sequencing layer to select
one. The robot selects the disc in the uppermost tray and grasps it (5/2-5/3). The shelf is approached
by using the approaching maneuver of the motion control that is able to simultaneously consider two
robot shapes. Otherwise, the robot would not be able to approach the shelf since its contour would
collide with the shelf. Figure 6.5 shows the continuation of the grasping maneuver (1/1-1/2). The
robot now moves to the table taking into consideration its extended contour due to the payload and
the deployed manipulator (1/3-3/1). During movements, the manipulator is moved into the upmost
position to not interfere with the field of view of the laser range finder. The vision system is used to
check the current table configuration (3/2-4/1) and the manipulator is again moved down. Finally, the
manipulator is again moved upwards to let the laser range finder have an unoccluded field of view
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and when approaching the table to place the disc (4/2-5/1). The approaching maneuver again uses the
two-shape configuration.

All the constraints on the various steps are represented in a descriptive way in the task net descrip-
tions of the sequencing layer and are checked by the task net interpreter at execution time. Without a
descriptive representation, one would hardly be able to handle such complex interactions.

6.3 The Mail Distribution Task

The mail distribution task distributes discs from a mail shelf to the shelves of the denoted rooms.
As can be seen in (2/2) in figure 6.6, each bin is labeled by a convertible room number. The overall
sequence takes approximately 10 minutes to execute. The robot first checks the mail shelf, selects a
disc and puts it on a free tray of the shelf in the appropriate room. In case the shelf is full, it reports a
task execution failure.

Image (3/3) in figure 6.7 shows another type of detected execution flaw. The laser range finder
acknowledged the mail shelf but the vision system was not able to detect it. The reported status of the
vision system makes it impossible to the task execution unit to proceed as planned and it thus looks for
an alternative plan expansion. In case the knowledge base reports a mailshelf and the vision system
reports a detection flaw, a plan expansion applies that asks the user to reposition the robot. The user
can decide on whether to continue after a manual repositioning or to abort the overall task. In case of
continuing, the task execution unit resumes the original plan expansion so that the vision operator is
retried.
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Figure 6.4: Pattern building task — part one.
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Figure 6.5: Pattern building task — part two.
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Figure 6.6: Mail distribution task — part one.
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Figure 6.7: Mail distribution task — part two.
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Figure 6.8: Mail distribution task — part three.
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Chapter 7

Summary and Future Work

7.1 Summary of Results

As soon as robotic systems have to operate in the same environment as humans or even along with
humans, they have to perceive the environment and have to react to perceived changes. In reference
to the best available knowledge, performing anything more than toy problems requires the integrated
use of symbolic and subsymbolic mechanisms of information processing.

Not only that components of such a robotic system are of considerable complexity, overall system
complexity is further increased by component interactions. Further demands are imposed by modern
architectures for taskable robots like three-layer architectures which require the various skills to be
composable at runtime to form behaviors adjusted to the current task and the perceived situation. The
situation dependent composition and selection of skills cannot be omitted since it is the only way
to execute complex tasks in a dynamic environment. It is very unlikely that a single approach can
handle all situations and contingencies experienced in real world. Thus, situation and task dependent
composition of behaviors is a poweful approach to level out shortcomings of approaches.

A software concept tailored to the needs of taskable robots has been developed and implemented.
The approach dictates no rules for decomposition but provides support for clear arrangements of com-
ponent interfaces. This is achieved by standardized communication patterns that provide a predefined
semantics for component interactions. Conducting all component interactions by communication pat-
terns is the key to the dynamic wiring pattern. It can be seen as the pattern of robotics since it makes
the control flow and the data flow configurable from outside a component at runtime.

The software architecture has been successfully used within several large scale projects ranging
from academic to industrial collaborations and demonstrated its capability to master the complexity
issue and now forms a major part of the OROCOS initiative.

Furthermore, an approach for navigating in dynamic environments has been developed which is
balanced in terms of necessary computing power, achieved reactivity and deviation from optimality
and completeness and which allows to drive with considerably high speed. It is able to cope with
any-shaped robots at the level of motion control and ensures mobility in most situations in dynamic
environments. The responsibilities are assigned to the involved components such that the robot always
operates in a safe state taking into account its kinematic, dynamic and shape constraints.

Finally, an outline of a computation scheme for simultaneous localization and mapping has been
presented [129]. The computation scheme allows to acquire a preliminary map of the environment
that can already be used for localization and navigation. Due to a conservative filter, one never gets
overly confident in the pose estimate while still being able to extract absolute node poses suitable for
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exploration by a relaxation based scheme. Since a relative map is used, no information is lost during
the exploration phase even that a conservative filter is applied to extract absolute node poses. Thus,
the time-consuming global optimization can be postponed without loss of information.

A full-fledged and taskable mobile robot that is able to perform various complex fetch and carry
tasks as well as recognition tasks in a dynamic test environment has been implemented and used to
verify the workability of the approaches. It proved that the overall concept of integration as well as
the methods used within the various components are one way to accomplish complex tasks under real
world constraints.

7.2 Future Work

This thesis only shortly strived the sequencing layer and the interaction with the deliberative layer
[130] [128]. However, it proved to be crucial to be able to store procedural knowledge on how to
perform a task in a declarative way within task nets. The declarative representation allows to handle
all the various details about different settings in a way that is manageable and extensible. The powerful
sequencing mechanism is a key feature.

Reliable and stable basic skills combined with a concept for integration are a step forward towards
more flexible systems. Even though the system implemented on the algorithms and concepts presented
in this thesis is already able to perform tasks of remarkable complexity even in a dynamic environment,
it still is only a small step towards autonomous robots.

A lot of procedural knowledge is encoded by means of task nets. For example, this includes
knowledge about when and how to apply the vision system. This is the key to be able to provide
context dependent knowledge like the expected objects or the height of a table which is needed by
the vision based object recognition to determine the positions of objects. However, the symbolic task
planner is integrated in the same way. On the one hand, that has the advantage that one can reduce
the search space dramatically by providing only that part of the knowledge base that is relevant for
the current planning task. On the other hand, that prevents the deliberative layer from continuously
monitoring the activities of the sequencing layer.

In general, both situation recognition and the better integration of a deliberative component seem
to be decisive on the way towards fully autonomous systems. At present, far too much knowledge
on how to decide in a specific situation needs to be provided beforehand. However, only fully inte-
grated systems equipped with reliable and stable skills and a maintainable architecture provide the
basis for addressing these issues since systems operating in real world do not allow for unrealistic
simplifications.
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[129] C. Schlegel and T. Kämpke. Filter design for simultaneous localization and mapping (SLAM).
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pages 2737–2742, 2002.

[130] C. Schlegel and R. Wörz. Interfacing different layers of a multilayer architecture for sensorimo-
tor systems using the object-oriented framework SMARTSOFT. In Proceedings 3rd European
Workshop on Advanced Mobile Robots (EUROBOT). Zürich, Schweiz, September 1999.
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Zusammenfassung

Servicesysteme in Form von mobilen Robotern sollen zukünftig Aufgaben in einer natürlichen Umge-
bung ausführen, teilweise sogar zusammen mit Personen. Derartige Systeme müssen ihre Umgebung
wahrnehmen und auf wahrgenommene Veränderungen selbständig reagieren. Das Ziel ist oftmals
nicht mehr maximale Effizienz, sondern die zuverlässige und vor allem selbständige Bewältigung
verschiedener Aufgaben.

Nach heutigem Stand des Wissens verlangt dies eine integrierte Nutzung symbolischer und sub-
symbolischer Mechanismen der Informationsverarbeitung mit vielfältigen Wechselwirkungen. Wäh-
rend subsymbolische Mechanismen Flexibilität und Reaktivität auch in veränderlichen Umgebungen
sicherstellen, erlauben symbolische Ansätze zielgerichtete Handlungsabläufe, erfordern aber meist
sehr viel Zeit und andere limitierte Ressourcen in kritischen Ablaufbereichen.

Die state-of-the-art Architektur für solche Systeme ist eine 3-Ebenen-Architektur. Die unterste
Ebene, genannt skill layer, besteht aus Komponenten, die Sensorwerte verarbeiten und Aktoren an-
steuern. Diese bilden Regelungsschleifen, erstellen eine Karte der Umgebung oder stellen Kollisi-
onsfreiheit bei Bewegungen sicher. Die mittlere Ebene, genannt sequencing layer, ist für die situati-
onsabhängige Selektion und Konfiguration von Komponenten zuständig. Sie koordiniert die Aufga-
benausführung durch Synchronisieren des Ausführungsfortschrittes mit der diskreten Beschreibung
der erforderlichen Aktionsfolge. Die oberste Ebene, deliberation layer genannt, umfaßt zeitinten-
sive Algorithmen wie die symbolische Handlungsplanung, die typischerweise zukünftige Zustände
berücksichtigen.

Die organisatorische Stärke einer 3-Ebenen-Architektur ist in ihrer grundsätzlichen Unterstützung
einer situationsabhängigen Anwendung der auf dem Roboter verfügbaren Fähigkeiten begründet. Dies
ist vor allem für Servicesysteme wichtig, die eine Vielzahl unterschiedlichster Herausforderungen
während der Aufgabenausführung bewältigen müssen. Typischerweise reicht ein einzelner Ansatz für
jede Teilaufgabe nicht aus, da es unwahrscheinlich ist, daß beispielsweise eine Bewegungsführung
alle Aufgaben der Bewegungsführung bewältigen kann.

Eine 3-Ebenen-Architektur entfaltet ihre volle Leistungsfähigkeit nur auf der Basis einer aus-
reichenden Anzahl verfügbarer Basisfähigkeiten. Weiter müssen diese dafür ausgelegt sein, zu un-
terschiedlichen Verhaltensmustern kombiniert zu werden. Ohne die Möglichkeit der situations- und
aufgabenabhängigen Konfiguration und Rekombination von Basisfähigkeiten ist man typischerwei-
se nicht einmal in der Lage, selbst eine einfache Hol- und Bringaufgabe auszuführen. Weiterhin ist
man nicht in der Lage, Schwachstellen einzelner Ansätze durch gezielte Auswahl von Alternativen
auszugleichen.

Sobald eine steigende Anzahl von Komponenten zur Ausführung unterschiedlichster Aufgaben
und zur Bewältigung verschiedenster Situationen benötigt wird, ergeben sich sofort zwei Aspekte.
Zum einen sind auf einem mobilen System nur beschränkte Ressourcen verfügbar, so daß Basisfähig-
keiten benötigt werden, welche ausgeglichen sind in Bezug auf erforderliche Ressourcen, Reaktivität
und erzieltem Resultat. Zum anderen stellt sich sofort die Frage der Komplexitätsbeherrschung. Die
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Komplexität ergibt sich nicht nur aus den Einzelkomponenten, sondern vor allem durch ihr wechseln-
des Zusammenspiel. Obwohl sich 3-Ebenen-Architekturen als Standard herauskristallisiert haben, ist
das Fehlen von Standards für Komponenten und deren Interaktion die hauptsächliche Ursache für die
Komplexitätsprobleme bei der Umsetzung einer Roboterarchitektur.

Daher besitzt die vorliegende Arbeit zwei Schwerpunkte. Der erste Schwerpunkt zielt auf die
Vereinfachung der Realisierung komplexer Roboterarchitekturen wie sie für Servicesysteme benötigt
werden. Der zweite Schwerpunkt zielt auf die Erweiterung der Basisfähigkeiten durch ausgeglichene
Ansätze, welche die Vorteile lose gekoppelter Komponenten nutzen.

Zur Komplexitätsbeherrschung wird ein Komponentenansatz vorgestellt, der an den Erfordernis-
sen von Mehrebenenarchitekturen ausgerichtet ist. Der Ansatz macht keine Vorschriften bezüglich
der Aufteilung in Komponenten, erzwingt aber die Einhaltung wohldefinierter Komponentenschnitt-
stellen. Dies wird erreicht durch standardisierte Kommunikationsmuster, welche eine vordefinierte
Semantik für die Interaktion von Komponenten bereitstellen. Dabei kann das dynamic wiring-Pattern
als das Interaktionsmuster der Robotik gesehen werden, da es sowohl den Kontrollfluß als auch den
Datenfluß von außerhalb einer Komponente konfigurierbar macht.

Weiter wird ein Ansatz zur Navigation in dynamischen Umgebungen erläutert, der ausgeglichen
ist in Bezug auf benötigte Rechenleistung, erzielte Reaktivität und Abweichung von Optimalität und
Vollständigkeit. Auf der Ebene der Bewegungsführung wird die exakte Kontur des Roboters berück-
sichtigt. Die Zuständigkeiten zwischen den einzelnen Komponenten sind so verteilt, daß sich der
Roboter immer in einem sicheren Bewegungszustand unter Berücksichtigung der kinematischen, dy-
namischen und geometrischen Beschränkungen befindet.

Außerdem wird ein Berechnungsverfahren für die simultane Lokalisierung und Kartierung be-
schrieben. Das Verfahren erlaubt die Akquise einer vorläufigen Karte der Umgebung, welche bereits
gleichzeitig zur Lokalisierung und Navigation verwendet werden kann. Durch das Erstellen einer
relativen Karte können zeitintensive Optimierungsverfahren zur Bestimmung der besten Karte oh-
ne Informationsverlust aufgeschoben werden. Durch Anwendung eines konservativen Filters können
dennoch für die Exploration geeignete Positionsschätzungen einschließlich einer Varianzangabe be-
stimmt werden.

Die Tragfähigkeit der Ansätze wird anhand eines vollständig realisierten mobilen Roboters illu-
striert, der unterschiedliche und umfangreiche Hol- und Bringaufgaben in einer dynamischen Testum-
gebung ausführen kann. Es bestätigte sich, daß sowohl das Gesamtkonzept zur Integration als auch
die Methoden, welche die Basisfähigkeiten realisieren, geeignet sind, komplexe Aufgaben unter den
schwierigen Bedingungen einer realen Welt auszuführen.

Der Komponentenansatz wurde erfolgreich innerhalb verschiedener Großprojekte sowohl aus dem
akademischen als auch dem industriellen Umfeld eingesetzt und bestätigte seine Eignung als Mittel
zur Komplexitätsbeherrschung. Zwischenzeitlich stellt dieser Ansatz eine zentrale Komponente der
OROCOS Initiative dar.


